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Abstract

Can low risk be risky? In this macro-financial model, smooth business-cycle-
frequency fluctuations may disguise vulnerability to panics. Self-fulfilled panics trig-
ger collapses in asset prices and output. When moderately capitalized, the financial
sector uses debt to shield allocation efficiency from real shocks, smoothing business-
cycle-frequency fluctuations and supporting high asset prices. However, an indebted
financial sector, coupled with high asset prices, fuels the exposure to panics: these
low-volatility environments are, indeed, risky. A stability paradox emerges: more sta-
ble fundamentals lead to a less stable economy, more prone to panics. Importantly,
business-cycle-frequency risk, and not the exposure to collapses, drive portfolio alloca-

tions.
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1 Introduction

The seemingly paradoxical idea that stability breeds instability is widespread in policy and
academic discussions. In particular, the hypothesis that periods of stable macroeconomic and
financial outcomes disguise and even foster financial fragility became a first-order concern
after the Global Financial Crisis 2007-09. However, more than a decade later, the interaction
between the volatility of business-cycle-frequency (BCF) fluctuations and the vulnerability
to financial collapses has not found its place within macro-financial models. Due to this gap,
some key questions remain unresolved. Do prolonged periods of macroeconomic stability
such as the Great Moderation make the economy more vulnerable to financial meltdowns?
Can the financial system be simultaneously resilient to real shocks but highly susceptible
to self-fulfilled crashes? Can macroprudential policies limit financial fragility while allowing
sufficient intermediation to smooth business cycles? This paper makes a step forward towards

answering these questions.

Understanding the interaction between BCF fluctuations and financial collapses involves im-
portant challenges. First, the framework must recognize the multidimensional nature of the
instability generated by financial distress: it can amplify and increase the persistence of BCF
fluctuations and also make the economy more prone to crashes associated with panics (e.g.,
systemic runs of creditors). Second, since the intensities of these endogenous instabilities
are nonlinearE] studying the economy’s dynamics away from normal times becomes critical.
This paper uses continuous-time methods to deliver a tractable framework to study both

instabilities jointly.

Following the standard parable in the literature, I set up a macro-financial model with two
types of risk-averse agents: wunproductive households and productive experts (or financial
institutionsﬂ). The productivity gap allows experts to earn a higher return from managing
capital, the only physical asset in the economy. These returns are subject to an aggregate

productivity shock, whose volatility follows an exogenous stochastic process. These real

IBrunnermeier and Sannikov| (2014) show that the amplification of real shocks is highly nonlinear: muted
around the steady-state but significant when the financial sector is impaired. Gertler and Kiyotaki (2015)
pointed out that the exposure to bank runs increases after adverse productivity shocks but, to the best of
my knowledge, the full dynamics of this instability are unexplored and a contribution of this paper.

2Since any friction between financial institutions and non-financial productive firms is assumed away,
experts represent both. Given the focus on the relationship between financial institutions and their creditors,
I refer to experts also as financial institutions.



disturbances drive BCF fluctuations and are modeled as Brownian motions. Experts finance
capital holdings beyond their net worth by issuing non-contingent debt to households. Debt

contracts are the only financial asset in the economy.

A panic is a generalized loss of confidence in the solvency of experts. Panics arrive according
to a Poisson process but only become self-fulfilled when experts are not able to meet their
debt obligations at liquidation price for capital, which is the price when unproductive house-
holds hold the entire capital stock. Self-fulfilled panics force experts into bankruptcy and
trigger substantial drops the capital price and output. Two variables summarize the state of
the economy: the wealth share of experts (or the financial sector’s capitalization relative to

the entire economyEI) and the volatility of real shocks.

The economy presents two instabilities: BCF fluctuations, which depend on the exogenous
volatility of real shocks and the endogenous amplification of their effects, and the vulnera-
bility to panics. The paper’s main contribution is to include both instabilities in a tractable
framework and study their joint dynamics. The analysis unveils two central messages. First,
the endogenous emergence of risky low-volatility environments: periods with stable BCF
fluctuations —due to a null amplification of real shocks— but exposed to economic meltdowns
triggered by panics. Second, the stability paradox: a decline in the volatility of real shocks
fuels their amplification mechanism and the vulnerability to financial panics, delivering a

less stable economy.

Two insights regarding the interaction between the instabilities and the capital price are
fundamental to understand the main messages. First, although both instabilities operate
through financial institutions’ balance sheets and intensify as these weaken, each depends on
a distinct feature of the dynamics of capital price. The amplification of real shocks hinges
on the sensitivity of capital price to small variations on the financial sector’s capitalization,
while the exposure to panics depends on the gap between current capital price and its
liquidation value. As a consequence, high capital price fuels the vulnerability to panics but
does not influence the amplification of real shocks. This distinction opens the door for the

risky low-volatility (RLV) periods.

The second insight highlights the different effects each instability has over the capital price:

3This is an inverse measure of how much funds the financial sector would need to raise to provide full
intermediation and allow efficient input allocation. It is different from capitalization measured relative to
the assets that the financial sector holds, which I refer to as the financial sector’s leverage.



while more volatile BCF fluctuations depress the capital price, greater vulnerability to panics
does not influence it. The reason behind is the asymmetric effect over the capital demand
of experts relative to households’ Despite reducing the capital demand of both types of
agents, more extensive exposure to panics does not affect the relative capital demand. The
equivalence of the two demand contractions follows from all marginal losses being ultimately
borne and priced by households. The absence of feedback from the vulnerability to panics

to capital price is crucial for the two central messages.

The emergence of RLV periods illustrates that at least one dimension of financial fragility is
decoupled from volatile outcomes, sluggish growth, depressed asset prices, or weak financial
institutions’ balance sheets: crashes triggered by panics can arrive during relatively good
times. In terms of the economy’s states, RLV periods arise when the volatility of productivity

shocks is sufficiently low and the financial sector is moderately capitalized.

During RLV periods, financial institutions have enough wealth to ensure that productive
agents hold the entire capital stock and shield this efficient allocation from real shocks.
After an adverse productivity shock, financial institutions increase their debt instead of
contracting their balance sheets. Hence, there is no impact on allocation efficiency and no
amplification. BCF fluctuations are stable, and the financial system seems robust. However,
financial institutions are not sufficiently capitalized to avoid heavily relying on debt financing.
The efficient capital allocation implies high capital price, which coupled with an indebted
financial sector, makes the economy highly vulnerable to panics. So, the stable environment

is, indeed, fragile.

Besides the novel RLV periods, the economy transits other two risk regimes: a crisis regime,
when financial institutions are poorly capitalized, and a safe regime, when financial institu-
tions are extensively capitalized. During crisis periods, the financial sector’s intermediation
is not sufficient to achieve the efficient capital allocation, and it is sensitive to real shocks.
These features translate into volatile BCF fluctuations and a depressed capital price. More-
over, the economy can also be vulnerable to panics. During safe periods, financial institutions
ensure all capital is managed by productive agents maintaining low debt levels. Therefore,

output and capital price are high, and the economy is resilient to real shocks and panics.

Studying the economy’s dynamics as the exogenous volatility of real shocks varies unveils

the stability paradox: more stable fundamentals lead to a less stable economy. In equilib-



rium, lower volatility of real shocks generates financial institutions to expand their balance
sheets. In terms of BCF fluctuations, the financial sector’s weaker balance sheets intensify
the amplification of real shocks. Brunnermeier and Sannikov| (2014) named this result the
volatility paradox. However, the amplification response is not sufficiently strong to over-
come the decline in the volatility of real shocks, i.e., more stable fundamentals translate
into smoother, or at least equally smooth, BCF fluctuations. The stability paradox follows
from the response of the exposure to panics to more stable fundamentals. More substantial
leverage translates into a higher capital price, so both determinants of the vulnerability to
panics rise as the volatility of real shocks declines. Moreover, as fundamentals becomes more

stable, the economy spends more time in the RLV regime and less in the safe regime.

The paper examines two sets of policy interventions to mitigate the economy’s instabili-
ties. The first one corresponds to leverage constraints. Leverage enables productive experts
to hold more capital, so leverage caps lead to the trade-off between stability and output.
The analysis unveils that a constant leverage cap has significant shortcomings: it severely
constraint leverage during downturns and decelerates recoveries after deep recessions. A risk-
based leverage constraints improves the output-stability trade-off because, in equilibrium,
this leverage cap is counter-cyclical. A leverage constraint that limits the debt-to-output ra-
tio in the economy lead to further improvements. In equilibrium, the latter constraint does
not limit leverage during downturns, instead it constrains experts’ risk-taking only when

potential losses due to self-fulfilled panics would be the greatest.

The three mentioned leverage constraints limit experts’ leverage when instabilities would
be extensive. However, the optimal state-contingent leverage cap focuses on preventing the
economy from escaping the safe regime. It limits experts’ risk-taking only when the financial
sector is moderately or extensively capitalized to ensure that households are the marginal

buyers of capital, which accelerates experts’ wealth accumulation.

Using an extension of the model, the second set of policy exercises examines the economy’s
response to variations in the volatility of idiosyncratic shocks. An interpretation is that
policy can influence the degree of idiosyncratic risk-sharing in the economy. Idiosyncratic
fluctuations influence capital allocation and its price, so allowing for idiosyncratic volatil-
ity reduces experts’ leverage, limiting the exposure to panics and the amplification of real
shocks: idiosyncratic risk controls aggregate risks. A non-monotonicity emerges: instability

(including idiosyncratic fluctuations) is U-shaped as function of idiosyncratic volatility.
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Related literature. The idea that stability breeds instability has been discussed at least
since (1986)). Existing theories embody the spirit of this idea by illustrating how eco-
nomic booms can lead to financial fragility, e.g., through looser lending standards (Gorton
and Ordonez (2014, 2019), [Farboodi and Kondor| (2020))) or extrapolative expectations
dalo et al. (2018)), Greenwood et al.| (2019)). The present paper offers a different perspective

by emphasizing the multidimensional nature of financial fragility, opening the possibility for
the limited exposure to one dimension (amplification of real shocks) to coexist and even fuel

the vulnerability to another one (exposure to crashes triggered by panics).

The literature has extensively studied each of the two dimensions of financial instability
considered in this paper separately. First, there is lengthy literature on the role of financial
frictions in the propagation of real disturbances, which follows seminal contributions by

Kiyotaki and Moore| (1997), and Bernanke et al| (]1999DH Particularly relevant are the
studies that highlight that the intensity of the amplification of real shocks varies in a non-

linear fashion along the business cycle (e.g., Mendoza (2010), Brunnermeier and Sannikov

(2014))). The present paper shows that the amplification mechanism is invariant to the

economy’s vulnerability to systemic crashes.

Second, the literature includes several examples of self-fulfilled financial crises that can ma-
terialize only in certain states of the economyﬂ The present paper shares with this literature

the emergence of a feedback loop between asset prices and the fundamentals behind them.

The branch that studies banking panics following Diamond and Dybvig (1983)) is the most

relevant for this paperﬁ Unfortunately, most of it uses frameworks not suitable for macroeco-
nomic analysis (i.e., finite-horizon partial equilibrium models). Only after the central role of
runs in the last financial crisis (Bernanke| (2018)), |Gorton| (2010)), the profession has worked

towards incorporating bank runs into the macroeconomic analysisﬂ The closest to our work

is |Gertler et al.| (2019), which incorporates banking panics into a macroeconomic model and

focuses on propagation mechanism of real shocks that trigger systemic runs. Complement-

4This literature has expanded rapidly since the financial crisis and is too vast to attempt to summarize it
here. For recent surveys, see |Gertler and Kiyotaki| (2010), (Quadrini| (2011)), and Brunnermeier et al. (2013]).
The literature focuses on productivity shocks but also explores uncertainty shocks (e.g., (Christiano et al.|
(2014)and |Di Tella (2017))).

°For recent examples, see |Perri and Quadrini| 42018[), and |Bocola and Lorenzoni| (]2020[).

6For example, |G01dstein and Pauzner| (2005), and |Allen and Gale| (1998} 2004).

"Recent efforts to incorporate bank runs into macroeconomic models include |Gertler and Kiyotaki| (2015,
(Gertler et al|(2016), Martin et al.| (2014) and [Uhlig| (2010).




ing their work, this paper focuses on the interactions between the two instabilities and their
response to variations in the fundamental volatility. In contrast to their study, this paper
unveils that the vulnerability to financial panics can arise not only after adverse productivity

shocks but also during booms.

From a methodological point of view, this paper relates to the continuous-time macro-finance
modelﬂ that follow He and Krishnamurthy| (2011} |2013) and Brunnermeier and Sannikov
(2014, 2016)), while the approach to include banking panics in an infinite-horizon economy
follows (Gertler and Kiyotaki (2015). Technically, the closest paper is Brunnermeier and
Sannikov| (2015), which studies the amplification of real shocks together with a different class
of discrete collapses: sudden stops of international capital flows. Relative to this literature,

the methodological contribution is the analysis of anticipated aggregate jump risk.

2 Model

2.1 Environment

Let (2, F,P) be a probability space that satisfies the usual conditions, and assume all stochas-
tic processes are adapted. The economy evolves in continuous time with ¢ € [0,00) and is
populated by a continuum of two types of agents: ezperts and households. Individual agents
are indexed by j, and the set of experts and households are denoted by Je; and Jj, ;, respec-
tively.ﬂ The economy features two goods: the consumption good and capital (measured in

“efficiency units”).

In reality, the intermediation chain that channels resources from savers to end-borrowers
often has several links. For tractability, I bundle the entire chain in the two mentioned
groups: ezxperts that include end-borrowers and financial institutions, and households that
represent savers. The focus is on the liability side of financial institutions’ balance sheets,

so I refer to experts also as financial institutions throughout the paper.

Technology. The production technology has constant returns-to-scale and takes only cap-

ital as input: an agent with k;; units of capital produces a;jk;; units of the consumption

8This growing literature includes |Adrian and Boyarchenko| (2012), Moreira and Savov]| (2017), Di Tella
(2017) and He and Krishnamurthy| (2019).

ISince decision agents’ decisions will scale with net worth, the reader can think of a single expert and a
single household with the entire wealth of their respective sectors.



good. Within each group, productivities are homogeneous, so abusing notation, I refer to
the two productivities as a. and aj. Experts are more efficient than households at managing
capital, i.e., a. > ap. The productivity gap summarizes the value that financial institutions

create by intermediating funds.

Over a short period (from ¢ to ¢+ dt), capital evolves according to
dkjt = /{j,t[(q) (Lj,t) —0)dt+/sto-dZy], (1)

where ¢;; is investment per unit of capital,  is the depreciation rate, Z; is a d-dimensional
Brownian motion with independent components, and /s;0 (with s; € R, o € Rd) is the
sensitivity of capital efficiency units to the Brownian shocks. I interpret stochastic changes
in capital efficiency units as productivity shocksm For expositional convenience, the law of

motion presented does not include capital sales or purchases, which may also occur.

The investment technology allows for transforming ¢;.k;; units of consumption goods into
®(14)kjs units of capital. Function ® represents technological illiquidity or adjustment
costs and satisfies (0) =0, ®'(0) =1, ®'(-) > 0, and ®”(-) < 0. The sensitivity of capital
to Brownian shocks is also stochastic. In particular, the time-variant component follows a
mean-reverting process

dSt:)\s(E—St)dt—i—\/S_tO's‘dZt s (2)

where 5 is the long-run mean, A\ the mean reversion parameter, and /s;0, € R? the sensi-
tivity to the Brownian shocks. I refer to s; as the volatility of productivity (or real) shocks
and interpret its stochastic changes as wvolatility shocks. The framework accommodates an
arbitrary number of shocks that simultaneously affect productivity and volatility. However,
for pedagogical purposes, the exposition considers two “pure” shocks (d =2), i.e., a produc-
tivity shock (o) >0, ng) =0) and a wvolatility shock (0(2) =0, 0§2) > 0). The superscript

inside parenthesis denotes the position within the vector.

Since financial panics will be rare events, the response of macroeconomic variables to real
shocks (modeled by the Brownian motion) is the only source of stochastic fluctuations for

prolonged periods. As standard in macroeconomic, I think about these stochastic movements

10The macro-finance literature uses these capital quality shocks (as opposed to shocks to the output per
unit of capital, TFP) to capture productivity disturbances and preserve maximum tractability. A capital
quality shock behaves similarly to a persistent TFP shock that induces a higher utilization rate.



as business-cycle-frequency fluctuations: the first instability studied in this paper.

Overlapping Generations. To ensure a non-degenerate stationary wealth distribution
across agents’ types, [ assume a “perpetual youth” overlapping generations (OLG) structure.
All agents perish independently at the Poisson rate \;, and newborns arrive at the same
rate. Among them, a fraction v are designated as experts, while 1 — v are households. Dying
agents’ wealth is pooled and redistributed equally to newborns, regardless of their type.
To ensure that these bequests are positive, I assume there are no markets to hedge these

idiosyncratic death shocks.

Preferences. Preferences are symmetric for both types of agents. In particular, the utility

that agents obtain from a stochastic consumption path {c;;}i>0 is

(o]
pBo | [~ e log(esodt]. (3)

where p is the preference discount rate, which includes the Poisson death rate ;.

Markets and financial frictions. There are markets for capital and consumption goods.
Debt contracts are the only financial assets in this economy. A debt contract ensures the
repayment of principal and interest as long as the borrower remains solvent, and it transforms
into a claim on borrowers’ assets in the case of default. Debts of different financial institutions

are distinct assets because their exposures to default and recovery values may differ.

The complete absence of other financial marketﬂ is an extreme assumption made for
tractability, but it is not essential for results. The necessary feature is that financial in-
stitutions are not able to perfectly share the risks they take on the asset side of their balance
sheets. 1 also assume that financial institutions that underperform relative to their peers
incur in a prohibitively high cost ¢ (measured in consumption goods). This assumption

allows me to focus on symmetric equilibriums among financial institutions.

Financial panics. A panic is a generalized loss of confidence in the solvency of financial
institutions. Agents fear financial institutions will file for bankruptcy defaulting on their

debt and severely impairing capital allocation efficiency. This fear can lead agents to bid the

HThe absence of equity markets is a limit case of a “skin in the game” constraint, which can be mi-
crofounded by an agency problem in which financial institutions can divert a fraction of asset returns at
the expense of households (see, for example, [Brunnermeier and Sannikov| (2014)). Due to this constraint,
markets are incomplete, so agents cannot write contracts conditional on the aggregate shocks.



capital price down to a level consistent with unproductive households managing the entire
capital stock, which I refer to as the liquidation price of capital. If the capital price drop
to liquidation value triggers the bankruptcy of financial institutions, the concern becomes

self-fulfilled. If not, the initial fear has no consequences.

In other words, the economy is vulnerable to panics if financial institutions are not able
to meet their deposit obligations at liquidation price for capital, i.e., bes > Giket, where
be+ represents debt, ke capital holdings, and ¢; the liquidation value of capital. Abusing
notation, I use subindexes e and h to refer to an arbitrary expert and household, respectively.
The latter condition is equivalent to require strictly positive (percentage) losses for financial

institutions’ debt holders when capital drops to its liquidation value, i.e.,

~ +
——| >0, (4)

where £}, ; represents the mentioned loss and [-]7 = max{-,0}. After financial institutions file

for bankruptcy, their assets are distributed among creditors proportionally to their claims.

The vulnerability of the economy to panics depends on the exposure of the entire sector
to bankruptcy. No individual financial institution can influence this vulnerability by it-
self. Formally, the economy is vulnerable to panics if the measure of experts that file for
bankruptcy at liquidation price for capital is equivalent to the total measure of experts,
ie., B(j€der:bji>Gikji) =B(j € Jer) where B is the Borel measure. A finite number of
experts avoiding bankruptcy is irrelevant from an aggregate point of view. Condition is

equivalent to this definition when there is no within sector heterogeneity.

The Poisson process J; with endogenous intensity p; captures the arrival of panics that
become self-fulfilled (and trigger the bankruptcy of the financial sector as well as the collapses

of output and capital price). It satisfies

Pt =Ly, >0l (5)

where T’y is the arrival intensity of panics (the losses of confidence). Over a short period
(from t to t+dt), the probability that a panic arrives is I'4dt and it becomes self-fulfilled
only if the economy is vulnerable, i.e., 1 {6, >0y = 1. I't is an exogenously given mapping

from aggregate variables to R;. Analytical results will be robust to the particular function
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chosen, which will be adjusted to reflect that financial collapses are rare events.

Panics are sunspots that allow agents to coordinate their concerns about the viability of the
financial sector. The vulnerability of the economy to this generalized fear (i.e., the situations

in which it becomes self-fulfilled) is the second instability studied in this paper.

2.2 Agents’ problems and equilibrium

Agents choose their consumption c¢;, investment ¢; ¢, capital holdings k; ¢, and debt position

bj+ Let ¢; denote the capital price in terms of the consumption good (the numeraire)E
Households. Denote the household’s holdings of debt issued by experts as bj; (an asset)
and his net worth as n;; = ¢;k;j; +0b;j4. Given initial wealth n; o, household j maximizes
subject to kj; >0, nj; >0, and

dnje = [(an — ) kje +7ebje — cje] dt +d(aikj s —[loabye+ (g = @r)kje] A (6)

) ‘th:O

where the last term represents the cost households bear in case of a self-fulfilled panic: losses
on their debt holdings ¢ :b;: and on capital value (g; —G;)kj¢. The other terms are standard
and correspond to production net of investment (ap — ¢;¢) k¢, return on debt holdings 7:b; 4,
consumption expenditure c¢;j;, and capital gains absent self-fulfilled panics d(qtkj’t>’th:0'
The effects of productivity and volatility shocks are embedded in the latter.

For simplicity, this formulation assumes that all experts choose the same portfolio, and there-
fore, there is a unique debt contract available for households, which has return r; conditional
on no default. In general, the debt of financial institutions with different portfolios render
different returns, i.e., they are distinct assets, because the portfolio determines the recovery

rate in case of default.

Experts. Denote expert’s financing through debt as bj; (a liability) and his net worth

as njt = qtkj —bj. Given initial wealth n; o, expert j maximizes subject to kj; > 0,

12Given the presence of the aggregate Poisson process, some stochastic processes might not be continuous
in time, i.e., it might be that limg; x5 := 2, # a4 (all processes are right-continuous). I do not make that
distinction to alleviate notation and use the following convention. Given the stochastic differential equation
dxy = pg 1 dt + 04 +dZy + Ly +dJy, processes {fiz t,05 ¢,z ¢} are evaluated in their left-limit. Since (¢,Z;) are
continuous, this distinction is only relevant for the value of z; in the case of {{;+}.

10



n;t >0, and

dnje = [(ae — 1) kje = e(kjebio)bje — ciel di +d(aikis)| 0
= (Lygy , >0y + Lie, <oy (@ — @) ks )dJe — Lyg, . <one, >0y @ dl (7)
risky porfolio safe portfolio underperforming cost

where £ ;1 = [1 — % ' represents the percentage losses for expert’s creditors (i.e., house-
holds) in case of a self-fulfilled panic when the expert chooses portfolio (k;j,b; ). Since assets
are distributed proportionally to creditors’ claims after bankruptcy, they recover gik;/b;
percent of their investment. The potential losses are priced into the interest rate charged to
the expert, so it depends on his portfolio choice, i.e., 7¢(kj,bj¢). In equilibrium, the latter

function needs to be consistent with households’ corresponding asset-pricing condition.

When a self-fulfilled panic arrives, i.e. dJ; =1, there are two cases depending on the strength
of the chosen portfolio. Either the expert had chosen a risky portfolio, i.e., £, j; > 0, and has
to file for bankruptcy (n;; = 0) or he had chosen a safe portfolio, i.e., ¢ j; <0, and bears
the losses from the drop in capital value ((g; — §¢)k;,¢) without going bankrupt (n;; > 0).

If an expert chooses a safe portfolio when (almost) all other experts decide on a risky one, i.e.,
lyj+ <0 and £ > 0, he will underperform the market. I assume that, in these situations,
the expert incurs in a prohibitively high underperforming cost ¢. Given that financial panics
are rare events, choosing the safe investment strategy implies underperforming the market
for a prolonged period. The underperformance cost captures the fact that no asset manager

can stay in his job long if he consistently underperforms the market.@

This assumption allows us to focus on symmetric equilibriums among experts. Otherwise,
there is the possibility that some experts choose a risky portfolio and others a safe one.
In symmetric equilibriums, the portfolio chosen for every individual expert is the same, so
individual potential losses coincide with potential losses for the sector, i.e., £y j; = £ ;. This

symmetry implies that the last two terms in (7)) are zero in equilibrium.

Definition 1. (Competitive equilibrium) For any initial endowment of capital {kjo} such

that thpUJe,o kjidj = ko, a competitive equilibrium is a set of stochastic functions on the

I3Recent history is replete with examples of financial institutions that have chosen to underperform the
market while waiting for a large collapse but were not able to sustain the strategy long enough, such as Tiger
Management funds during the dot-com bubble.
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filtered probability space defined by {Zy, Jy : t > 0} aggregate outcomes {qs, Ge,7¢(k,b), Ly 1,01},

and agents’ decisions {cj¢,tj¢,kj .05t} jen,01. such thaﬂ

3

1. Initial net worths satisfy njo = qokjo for all j € JpoUJe0.
. Agents optimize: (i) Given {qt,(jt,rt = rt(keyt,bei),éb,t,pt}, decisions {c;j¢,tjt,Kjt,0jt}

solve household’s problem Vi € Uplly ¢, (71) Given {q, i, r¢(k,b),pt}, decisions
{¢jt tie, kje,bji} solve expert’s problem Vj € Uplle .

. Markets clear: capital [, g, , kjrdi = ki, debt [, bjrdj =[5, bjrdj, and consumption

goods [y, g, ¢itdi + Lo, ,>010 J1., Loy 5 <0d) = [, 01, (@5 — L) Kjedy.

. Aggregate volatility sy follows @ and aggregate capital stock satisfies the following law

of motion, starting with kg

dhy = (/ O (e )kjedy — 5kt> dt + ki/510 - dZy (8)
thtuq]]e,t

. Consistency conditions hold: (i) ri(kj,bj) is consistent with the corresponding asset-

pricing condition of households, (ii) {p:} is consistent with the endogenous exposure to

panics, (iii) {G;} is consistent with {q;}, i.e., lim,4 @ = q; if dJ; = 1.

Instabilities’ dynamics

This section introduces the central insights of the paper: 1) the endogenous emergence of

risky low-volatility environments: periods of smooth BCF fluctuations extensively exposed to

crashes triggered by panics, and 2) the stability paradoz: more stable fundamentals delivering

a less stable economy. First, I discuss the metrics for the amplification of real shocks and the

vulnerability to panics. Then, I show that, in the complete markets and autarky benchmarks,

the economy follows a stable growth path without these endogenous instabilities. Finally, I

describe the instabilities’ joint dynamics, which deliver the main messages. The discussion

about the mechanisms behind the results is postponed until we solve the model.

14 The definition includes the symmetry assumptions embedded in agents’ problems. In particular, when

defining the assets available to households, it assumes a symmetric portfolio decision among experts. This
considerably simplifies notation and exposition.
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3.1 Instabilities’ metrics

I focus on dynamics of aggregate output to summarize the two instabilities studied. However,
results are qualitative equivalent if we consider the dynamics of capital value, i.e., if we focus

on financial outcomes instead of macroeconomic ones.

Macroeconomic outcomes. Given the constant returns-to-scale production function, ag-
gregate output satisfies y; = a;ky where a; = k¢(ae — ap) + ap, and ky is the fraction of capital
managed by productive experts. Aggregate capital follows dk; = k; (/L;mdt + 0t dZt> where
it and oy, are defined by the equivalence to . Meanwhile, capital allocation follows
dat = at (ftapdt +0q - dZy — U 1dJy) where {pigt,00.4,0at} are endogenous equilibrium out-

comes. This conjecture is verified later. Then, aggregate output evolves according to

dyy

— = (,ulc,t + fat +0at Uk,t) dt+( opt + oar ) dZi  —lay dJy (9)
Yt ~— ~— ~~ ~— ~~ )
En exogenous  endogenous real shocks  Jogg self-fulfilled panics

The last two terms correspond to the two instabilities studied. Exogenous real shocks dZ;
are meant to capture BCF disturbances, so the sensitivity of output growth to these shocks
summarized by [|oy ¢|| = /0y 0y 1, Where oyt = 0y 4 + 041, measures the volatility of BCF
fluctuations. This volatility depends on the response of capital quantity oy, i.e., the ex-
ogenous or fundamental component of BCF fluctuations, and on the response of capital

allocation efficiency o4y, i.e., the endogenous component of BCF fluctuations. There is

endogenous amplification of real shocks when ’Ua,t+0'k7tH > HOMH' The latter condition
is equivalent to ||og || > 0 if the capital share managed by experts decreases with adverse

productivity shocks, as is the case in the equilibrium studied.

In contrast to real shocks, the arrival of self-fulfilled panic, i.e., dJ; = 1, is endogenous: the
economy is only vulnerable if the drop of capital price to liquidation value generates losses
to financial institutions’ creditors, i.e., 5 ; > 0. This loss is the metric I emphasize for the
economy’s vulnerability to panics. A complementary metric is the loss in output generated

by the self-fulfilled panic £,

Financial outcomes. Capital price follows dq; = q; (f1q,1dt + 04,1 - dZy — £y 1dJy) where {11, 044,041}

15This measure only depends on the drop in capital allocation efficiency because panics do not affect
aggregate capital. Also, the expected loss of output p:f, ; summarizes the two metrics discussed, however,
it also depends on exogenous mapping I'.
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are endogenous equilibrium outcomes. This conjecture is verified later. Then, using law of

motion for aggregate capital , total capital value in the economy (or total wealth) follows

d(qeke)
qiky

= (,Uk,t + gt +0gt- Uk,t) dt + (Uk:,t + O‘q,t> ~dZy — Ly dJy (10)

Macro-financial linkages. Appendix [A.2.2] shows that the effects of real shocks over
aggregate output are amplified (i.e., |04 > 0), if and only if, there is amplification over
capital value (i.e., ||oq¢|| > 0). Moreover, in equilibrium, the drop in capital value ¢, ; after
a self-fulfilled panic is a monotone transformation of the drop in aggregate output £,;. The
intuition behind is simple: in equilibrium, capital price and the share of capital managed by

experts co-move.

3.2 Benchmarks: complete markets and autarky

With complete financial markets, this is a standard AK growth model that features no am-
plification of real shocks or exposure to financial panics, i.e., all unexpected fluctuations in
aggregate output and capital value correspond to the exogenous component of BCF fluc-
tuations. Without financial frictions, the capitalization of the financial sector is irrelevant
for aggregate outcomes: productive experts manage the entire capital stock and share risks

optimally through financial markets. This competitive equilibrium is the first-best outcome.

Proposition 1. (Complete markets) With complete markets, aggregate output is given by

Yyt = acky, capital price is fixed at ¢*, and

dys _ d(giky)
Yt qrkt

=g dt+ oy dZ (11)
where g* = @ (1(q*)) — 0, function 1(q) is defined by ®'(1) =1/q, and ¢* solves pg* +1(q*) = ae.

Given this benchmark, we can attribute the emergence of endogenous instabilities and their
dynamics to financial frictions. Nevertheless, the intensity of the instabilities is not monotone
in the degree of market incompleteness since shutting down markets entirely —i.e., reverting
to autarky— also delivers an economy without amplification of real shocks or exposure to

crashes.
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Proposition 2. (Autarky) Let experts’ initial share of capital satisfy ko = k™. In autarky,
aggregate output is given by y; = a®“ky = {(ae —ap) K™ —i—ah] k¢, internal value of capital for

experts and households are fized at ¢* and ¢f, respectively, and

dys

" g™ dt +op - dZy (12)

where g™ < g*, a®™ < a., K% € (1,1) and ¢F < ¢* are constants. If ko # K, then there
is a deterministic transition towards k** before reaching the stochastic balanced-growth path

described.

Debt is the essential ingredient for the appearance of endogenous instabilities: in autarky,
there are no debt markets, while with complete markets, agents choose to finance through

state-contingent contracts instead of issuing debt.

3.3 Financial frictions and instabilities

In contrast to the benchmark cases, the model with financial frictions occasionally exhibits
endogenous instabilities: amplification of real shocks and vulnerability to panics. The pres-
ence and intensity of these instabilities depends on the states of the economy: the capital
stock k¢, the volatility of productivity shocks s¢, and the distribution of wealth among agents.
The latter is summarized by the wealth share of experts w; = J; Te nj+dj/qeky and allocations
scale linearly with the capital stock, so the relevant state-space reduces to (wg,s;). I also
refer to w; as the financial sector’s capitalization relative to the entire economy. From now
on, I switch to recursive notation, so time subindexes are suppressed. All equilibrium ob-
jects are functions of the aggregate states of the economy (w, s), but this dependence is left
implicit [[]

First, consider the instabilities’ dynamics conditional on a given volatility of productivity
shocks as illustrated by Figure III(a).E BCF fluctuations are amplified when the financial sec-
tor’s capitalization below threshold wy(s) (i.e., w < wy(s)), while the economy is vulnerable

to panics when that capitalization lies within an intermediate range (i.e., wy(s) < w < wy(s)).

16 Also, I denote by % the value that variable z would take if a self-fulfilled panic arrives when the aggregate
state is (w, s), i.e., Z = z(w(w,s),s), where w(w, s) is experts’ wealth share just after a self-fulfilled panic.

"The given volatility level s must be sufficiently low. As discussed later, for sufficiently large s, the
economy is not vulnerable to panics independently of the capitalization of the financial sector.
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Even though both vulnerabilities will depend on the weakness of financial institutions’ bal-
ance sheets, the vulnerability regions are different. Hence, the other determinants of these

instabilities must differ. We shall discuss the mechanisms in detail later.

Figure 1: Risky low-volatility environments
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Figure [ RLV environments correspond to the regions shaded in orange in panels (a) and (b). In
panel (c), the distributions correspond to a mixtures of two normal distributions: N (u,At, H0y||2 At)
with probability (1 —pAt) and N(uyAt —4g, Hay||2At) with probability pAt. The period length is
set to At =1. The levels of w selected to illustrate the distributions correspond to we % = 0.75w,,
wBEY = 0.5(w, +1wp), and w3 € = 1.25w,. For all panels, the volatility of real shocks is fixed at its long
run mean s = 5. The numerical illustration considers baseline parametrization detailed in Appendix [Bl

When the financial sector is moderately capitalized (i.e., wy(s) < w < wy(s)), periods of low
BCF volatility due to the absence of amplification of real shocks (i.e., ||o4|| = 0) that are
susceptible to crashes triggered by panics (i.e., £, > 0) endogenously emerge. See the shaded
area in Figures[[(a) and [[(b). During these risky low-volatility (RLV) periods, the economy
seems to follow a stable balanced-growth path with sound economic outcomes: the efficient
capital allocation delivers high output, high capital price, and strong capital growth. In fact,
output growth follows

d
yy = g*dt—l—dk ~dZy —ladJy (13)

which is the complete-markets’ outcome except for the vulnerability to panics.

There are two other risk regimes besides the novel risky low-volatility one: a crisis regime and

a safe one. Each of these risk regimes presents qualitatively different equilibrium outcomes.
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Crisis periods arise when the financial sector is poorly capitalized (i.e., w < wq(s)). These
periods correspond to the typical downturn with depressed output, capital price, investment,
and capital growth. Moreover, they are also highly unstable: BCF fluctuations are volatile

(i.e., ||oa]| > 0) and the economy can be vulnerable to panics (i.e., {, > 0).

On the other side of the spectrum, safe periods emerge when the financial sector is extensively
capitalized (i.e., w > wy(s)). During these periods, the financial sector allows the economy to
exhibit first-best outcomes in terms of output, capital price, investment and output growth
without exposing the economy to endogenous instabilities: there is no amplification of real

shocks or vulnerability to panics (i.e., [|oq|| = €, = 0 and output evolves according to (L1])).

Figure [(c) illustrates the qualitative differences in the dynamics of equilibrium outcomes
among risk regimes by plotting the conditional distributions of output growth. In the safe
regime, capital allocation is fixed at its efficient level, so output growth is stable and inherits
the distribution of capital growth: N(g*dt, |0y || v/dt) for a horizon of length dt. In the RLV
regime, output dynamics are identical except for one fundamental difference: with probability
pdt, a panic arrives and becomes self-fulfilled, triggering an output drop of ¢, percent. This
drop is captured by the second mode on the left tail the distribution. These two regimes are
observationally equivalent in terms of output until a panic triggers a substantial collapse,

sending the economy to the crisis regime.

During crisis periods, real shocks influence capital allocation efficiency, so output growth
is more volatile than in the previous regimes. Moreover, the economy can be vulnera-
ble to panics. If not exposed to panics, the conditional distribution of output growth is
N(pydt,||o + 04| V/dt). Tf vulnerable to panics, a second mode on the left tail appears due
to the possibility of a crash. Interestingly, the eventual crash in this crisis regime is less
severe than the one that can arrive during RLV periods (i.e., loss ¢, is greater during RLV

periods).

Now, consider the instabilities’ dynamics as the volatility of productivity shocks varies. In
terms of BCF fluctuations, more stable fundamentals reduce the range of financial sector’s
capitalizations where real shocks are amplified (i.e., dw,(s)/ds > 0), but it also intensifies
the amplification wherever still present (i.e., 9||og|| /Os <0 for (w,s) s.t. w < wy(s)). Nev-
ertheless, the response of the endogenous amplification is not sufficiently strong to overcome

the exogenous decline in the volatility of real shocks, hence more stable fundamentals gener-
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ate smoother, or at least equally smooth, BCF fluctuations (i.e., /oy + 04| /0s > 0). These
dynamics are illustrated by the heat maps in Figures 2(a) an 2(b).

Figure 2: The stability paradox (conditional on w)

(a) Endogenous amplification ||o,|| (b) BCF fluctuations ||oy + o, (c) Vulnerability to panics 4,

Volatility of productivity shocks s
Volatility of productivity shocks s
Volatility of productivity shocks s
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Figure 2l In each heat-map values are scaled by the maximum value of the variable. The bar at the
right provides the color code for all panels. White lines in these panels correspond to thresholds for
the presence of endogenous instabilities: we(s) for amplification and {w,(s),w,} for the vulnerability
to panics. The numerical illustration considers baseline parametrization detailed in Appendix [Bl

The stability paradox emerges when considering the effect of more stable fundamentals over
the economy’s exposure to panics. More stable fundamentals increase the vulnerability to
panics (i.e., 00y/0s <0 and O (wy(s) —wy(s)) /0s < 0) as illustrated by Figure (c). This
response, coupled with the weak reaction of the volatility of BCF fluctuations (due to the
opposing responses of their exogenous and endogenous components), delivers a less stable

economy when the volatility of real shocks decreases.

So far, the analysis has been conditional on the capitalization of the financial sector. How-
ever, more stable fundamentals also induce variation in the share of time the economy
spends at different levels of w. Figure B(a) illustrates that the stability paradox, if any-
thing, strengthens after accounting for the response of conditional distribution G(w|s). The
figure shows that overall instability is U-shaped as a function of the volatility of productivity

shocks, where the instability metric is the average local variance of output growth conditional
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on s, i.e., E[X(w,s)|s] with

2 2 2
S(w,s) =E[(dy/y)*lw,s] = Jowll®  +|low+oal” = llonl®+ pli
exogenous BCF endogenous BCF panics

The stability paradox result applies when fundamentals are sufficiently stable, i.e., the s-

region where the slope of the instability measure is negative.

The decomposition shown in FigureBl(a) evidences the central role of panics. As the volatil-
ity of productivity shocks declines, the contribution of the endogenous component of BCF
fluctuations decreases or slightly increases at most. Hence, BCF fluctuations’ contribution to
instability declines. However, the contribution of crashes due to panics sharply rises, driving

the increase of overall instability as s declines.

Indeed, the role of panics in the stability paradox goes beyond the contribution shown in
the decomposition. Without panics, the contribution of the amplification of real shocks
would collapse as s vanishes. The dashed line in Figure Bl(a) shows the contribution of
the endogenous component of BCF fluctuations in an economy without panics. The reason
is that more substantial exposure to panics implies more frequent crashes that send the
economy to a severe crisis, which counters the fact that experts need less wealth to escape
the crisis regime, delivering a roughly constant share of time spent in these situations. Figure
Bi(b) summarizes the time the economy spends in each risk regime for different volatilities
of real shocks. Interestingly, as fundamentals become more stable, the RLV regime becomes

the most visited one at the expense of safe periods.

In terms of the level of outcomes, for a fixed capitalization of the financial sector, more stable
fundamentals lead to a booming economy: it increases in aggregate output, capital price,
investment, and capital growth. However, once it is recognized that the economy is more
prone to deep crises when s is low (see dashed in Figure[3(b)), the potential boom becomes an
expected recession. Figure B(c) shows that expected aggregate output, investment, capital
price, and capital growth have an inverted U-shape as functions of the volatility of real
shocks.

At this point, the reader might be concerned about the lack of intuition provided about the
presented results and their potential fragility. Recall that this subsection only previewed the

main insights before working through the solution of the model. The next section explains
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the mechanisms and provides analytical characterization.

Figure 3: The stability paradox (including the effect over G(w|s))
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Figure[@ Panel (a) decomposes local variance into: exogenous BCF fluctuations E[||oy,||* |s], endogenous
BCF fluctuations E[|joy, + 04> — |jok|?|s], and crashes due to panics E[pf2|s]. All variables in panel
(d) are scaled by their level in the complete-markets benchmark. The numerical illustration considers
baseline parametrization detailed in Appendix

4 Model characterization

The goal of this section is to understand the mechanisms behind the two endogenous in-
stabilities —the amplification of real shocks and the vulnerability to panics— and provide an
analytical characterization of the paper’s two main insights: the emergence of risky low-
volatility environment and the stability paradox. The first subsection characterizes the re-
cursive equilibrium. The second provides two key insights about the interaction between the
instabilities and the capital price. The final subsection revisits the rise of RLV environments
and the stability paradox illustrated in section [3, detailing the intuition of the mechanisms

behind them and providing analytical characterization.

4.1 Recursive Equilibrium

Capital returns. The return on capital managed by agent j is




where the first term represents capital’s dividend yield net of investment and the second
term the capital gains rate, which includes price and capital quantity fluctuations. Recall
that capital is measured in efficiency units, so d(gk;) captures the variation in the value of
physical capital. Capital gains follow a process similar to but considering individual

capital evolution ([II) instead of the aggregate one. Then, capital return for agent j becomes
dRY = pg jdt+ (o, +0q) - dZy — Lyd Ty

where up; = (aj —tj)/q+P(tj) — 0+ pg+ 0y - 04. The expected return conditional on no
aggregate shocks, up ;, includes the dividend component and the deterministic capital gains.
The latter part is associated with deterministic quantity gains py, j = ®(¢;) — 9, deterministic
price gains ji4, and the interaction between unexpected quantity and price gains due to real

shocks (Ito’s term).

Consumption. For both type of agents, optimal consumption is proportional to wealth,
i.e., ¢j = p where ¢; = ¢j/n; is agent j’s consumption scaled by its wealth. Logarithmic

preferences implies that consumption decisions are independent of asset returns.

Investment. The return on capital for both type of agents is maximized by choosing
the investment rate that solves max, ¢®(¢) —¢ . Then, the investment rate is the same
for all agents. The FOC ¢®'(:) =1 (marginal Tobin’s Q) equates the marginal benefit of
investment (extra capital ®’(¢) times its price ¢) with its marginal cost (a unit of final goods)
and implicitly defines ¢(¢q). The concavity of adjustment cost ®(-) implies that ¢(q) is an
increasing function of the price of capital. Therefore, anything that depresses the capital

price will have a real effect through investment and capital growth.

Portfolio problems. The dynamic budget constraint for agent j, i.e. @ or @, can be
written as
dnj N
7 = ([Lnjj—Cj)dt—kan’j-dZt—gn’det , (14)
J
and the portfolio decision (k;,b;) is summarized by the share of net worth invested in capital
l::j = qk;/n; (if /%j > 1, I refer to it also as leverage). Appendix [A.2] shows that the portfolio

problem is

1 2
magﬂn,j—ﬂan,j\l +plog(1—"{n5) - (15)

kj>

Agents value the deterministic growth of net worth u, ; and dislike its fluctuations due to
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real shocks ||oy, ;|| and losses after self-fulfilled panics ¢, ;. This problem will be independent

of net worth’s level, i.e., all experts will choose the same k. and all households the same /%h-

For a household, the dynamic budget constraint @ becomes

fnh = knpigp + (1 — ]%h) r (16a)
O = ki (0% +0y) (16b)
Cpp= /%hgq + (1 — ]%h) 4 (16¢)

Each component is a weighted average between the corresponding values for capital return
and the return on debt holdings. The FOC for capital holdings is

prp—r <7 (o +0q) +ap (lg—LCp) (17)

where 7, =0, , and o, = p (1 — 5n,h> are households’ prices of risks, i.e., the excess return
(absent shocks) that households require for additional exposure to real shocks and additional
losses in case of a self-fulfilled panics, respectively. The LHS is the market excess return of
capital over debt holdings (absent shocks) and the RHS is the excess return demanded by
households to compensate for the additional exposure of capital to both risks. If households
hold capital, i.e., l%h > 0, then the latter expression must hold with equality. Lower required
excess return represents an increase in capital demand. The following lemma characterizes

households’ capital demand.

Lemma 1. (Households’ capital demand) When l%h > 0, the optimal portfolio share l::h s a
strictly decreasing function of p and £4. Also, given ug p, by is a strictly decreasing function
of llow +aq]l-

Before moving on to experts’ portfolio decisions, it is necessary to discuss how households
would price the debt of experts with different portfolios. In equilibrium, households have
access to a unique type of experts’ debt because all choose the same portfolio l%e; however,
experts need to know how households would price their debt if they were to choose a different

portfolio. The asset-pricing condition for an expert’s portfolio with capital share k is

r(k) =1 = anty(k), (18)
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where r/ = —E {dc}jl / c,:l} is the return households would require to hold a risk-free asset,
and éb(/%) is the percentage loss experienced by the creditors of an expert with share k
invested in capital, in case of a self-fulfilled panic. The latter was introduced in equation

and can be written as a function of the share of net worth invested in capital:

. +
(k) = [1—(1—@) (/:1)] . (19)

The spread over the risk-free rate needs to compensate households for the potential losses
and is increasing in the likelihood of a self-fulfilled panic p, the net worth drop ¢, ;,, and the
loss rate on deposits (k). An intuitive derivation of this condition follows from including
a risk-free asset with return r/ and a deposit with return (k) and loss ¢,(k) in households’

problem.

For an expert, the dynamic budget constraint becomes

pne = hepire — (ke = 1) (ke) — (1= 0(ke)) T (20a)
One = ke (ok+0q) (20b)
lne = 0(ke) + (1= 0(ke)) el (20c)

~

where ¥(ke) =1 (0y(he)>0} indicates if the portfolio chosen implies bankruptcy in case of a
self-fulfilled panic and T =1 {¢,>0) indicates if the economy is exposed to financial panics,
i.e., if (almost) all other experts chose such a portfolio. T is taken as given by any individual
expert. The FOC for capital holdings is

A~

LRe—T (ke) =T (0 +04)+ (1 — 19(/%6)) aely+1' (l%e) (lAce —1),

where 7. = 0y, and a. = p(1 —Eme)_l are experts’ prices of risks. The first term on the
RHS is the compensation for capital return’s exposure to real shocks. The second term is
the compensation for capital losses in case of a self-fulfilled panic, which is only taken into
account if the portfolio chosen prevents bankruptcy when capital price drops to liquidation
value, i.e., 19(/2:6) = 0. Otherwise, limited liability implies that marginal losses are irrelevant
for expert’s decision. The third term corresponds to the increase in financing cost, i.e., the

increase in the deposit rate, r’ (12:@) > 0, times total debt scaled by net worth, (l%e —1).
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When the economy is vulnerable to self-fulfilled panics, the FOC presented has two solutions
that correspond to two local maximums: a safe portfolio (9(k5) = 0) that implies no failure
after the panic, and a risky one (9(k.) = 1) that triggers bankruptcy if the panic arrives. In
the absence of the underperforming cost ¢, there could be an asymmetric equilibrium among
experts, i.e., one in which a fraction of them chooses the risky portfolio and the rest the
safe one. Selecting the safe portfolio implies underperforming the market and paying the

corresponding cost, which is never optimal by assumption.

Considering the risky portfolio (when the economy is exposed to panics) and using house-

holds’ asset pricing condition (I])), the FOC for experts becomes

~

MR,e—T(ke) :7r6~(Uk—i-aq)—l—ozhﬁg(lz:e)(l%e—l). (21)

It is key to notice that losses in case of a self-fulfilled panic are priced using the households’
price of losses . The reason is that experts only consider these losses in their marginal
decision through the change in the interest rate paid on their debt, which is priced by its

creditors: households. The following lemma characterizes experts’ capital demand.

Lemma 2. (Experts’ capital demand) Optimal portfolio share k. = (,upw —rf - ah€q> /llow + c7q||2
is a strictly decreasing function of £y and p. Also, given upg., it is strictly decreasing in

lok +oq]l-

Market clearing. Market clearing for capital (scaled by total wealth) is
feew + k(1 —w) =1, (22)

where (/%ew) gk is total wealth invested in capital by experts, and (/%h(l—w)) gk is the
corresponding quantity for households. Since capital is the only asset in positive net supply
in this economy, total wealth in the economy is gk. For convenience, define k = fiew as the

capital share managed by experts. Market clearing for goods (scaled by total capital) is
pq+(q) = kae + (1 —K)ap, (23)

where the LHS represents aggregate demand, and the RHS is aggregate supply. The condition
assumes that no financial institution pays the underperforming cost as it is the case in a

symmetric equilibrium.
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Evolution of aggregate states. While aggregate volatility of productivity shocks s evolves
exogenously according to , the evolution of experts’ wealth share w is endogenous with
law of motion dw/w = pu,dt + oy, - dZ — lyydJy where {piy, 0,0y} are equilibrium objects

characterized in the following lemma.
Lemma 3. (Ezperts’ wealth share law of motion)
A Aot 2
wiy = w(1 = w) (ke —kn) (ke +kn—1) o +0g* +an (lg— b)) + Xalv—w) ~ (24a)

wo = w(l—w) (ke — kn) (04 0y) (24b)

why =w—0 (24c)
where W is the wealth share of experts after a self-fulfilled panic.

Consistency conditions. (i) Capital price dynamics is consistent with the evolution of

the aggregate states, i.e.,

\/EO'S ’ + Qus (wo'w> : <\/§0's> (253)

q0q = Quw (’LUO'w) +qs (ﬁas) (25b)
gl=q—q (25¢)

_ 1 1
g = Gu (whte) +qs (As (5= 5¢)) + §wa Hwawu2 + 5%5

These conditions follow from applying Ito’s lemma to function g(w,s). (ii) Losses of experts’
creditors are consistent with their portfolio and capital price dynamics, i.e., evaluated
at ke delivers (. (iii) The arrival rate of self-fulfilled panics is consistent with the endogenous
exposure to panics, i.e., holds. (iv) The wealth share of experts after a self-fulfilled panic

is consistent with bankruptcy procedures, i.e., w = 0.

Definition 2. A Markov equilibrium in (w,s) is a set of aggregate functions q, piq,0q,%q, 7,y P, 0,
policy functions ke, kp, and a law of motion for the endogenous state variable piyy, 0w,y Such

that: 1) Given aggregate functions and the evolution of w and s, ke and ky, solve portfolio
problems for experts and households, respectively: and . 2) Markets clear: and
[23). 3) The law of motion of w satisfies (24)). 4) Consistency conditions (i)-(iv) hold.
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4.2 Instabilities and capital price

This subsection discusses two insights that link the capital price and instabilities. First,
while capital price decreases when the amplitude of BCF fluctuations increases, it does not
respond to variations in the exposure to panics. Second, while both instabilities hinge on
the strength of financial institutions’ balance sheet, they depend on distinct features of the

dynamics of capital price.

4.2.1 Instabilities’ effects over capital price

Relative capital demand. Optimal portfolio conditions and together with ex-
pert’s balance sheet identity , which is described below, characterize the relative capital

demand k. — ky:
Qe — Qp,

(Fe = kn) llo + ogl|* < (26)

with equality for kj > 0. The relative capital demand of experts increases with the ex-
cess capital return related to the productivity gap (a. —ap)/q and decreases with the risk

associated a BCF fluctuations ||oy + 04| but is invariant to the exposure to panics.

In equilibrium, experts choose a portfolio more biased towards capital than households (i.e.,
/%e > l?;h), so they are more vulnerable to instabilities and require greater compensations for
the exposure (i.e., me > 7, and ae > ay,). The latter implies that an increase in an instability
should reduce the demand of experts relative to households. This logic holds for the volatility

of BCF fluctuations but breaks for the exposure to panics because of bankruptcy.

The invariance result follows from the equivalence of the contractions in capital demands of
experts and households (last terms in and , respectively) when there is exposure to
panics: ah%(l%e)(l%e —1) =y, (¢;— ). Two factors are behind this equality, both related to
bankruptcy. First, the increase in the interest rate paid by experts —the cost of additional
losses to creditors— is priced using households’ price of losses ay,. Second, losses in capital
value ¢, and to experts’ creditors ¢}, are linked through expert’s balance sheet identity (scaled
by net worth)

ffegq =1 +€b (]%e> (]%e - 1) (27)

where the LHS represents total losses on expert’s assets and the RHS, how these losses are

split between the expert (drop in net worth) and his creditors (drop in value of their claims).
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In particular, the marginal increase in expert’s capital holdings, i.e., the derivative with

respect to /%e, delivers the condition needed:
by =Ly + Ly (ke) (ke — 1) (28)

Since expert’s losses are capped to net worth (due to limited liability), all additional losses
from increasing capital holdings k. are ultimately born by households: through the losses on
the credit extended to finance the additional capital holdings ¢; and the extra losses ég(ffe)
imposed over the entire stock of debt (k. —1).

To illustrate the critical role of bankruptcy and limited liability, consider the off-equilibrium
relative capital demand of an expert that chooses a safe portfolio (9(k?) = £,(k?) = 0) and

his creditors:
Qe — ap,

q

(k2 = k3) llow + o> + (ccks — ankf) €4 < (29)

In this case, the relative capital demand /%2 .y 3 is influenced by the exposure to self-fulfilled
panics. In particular, larger exposure to panics (p or {,) translates into a decrease of /Afj — As,
i.e., the agent with the larger exposure to the instability has greater incentives to reduce this
exposure. This follows from experts now taking into account marginal losses on capital value

and pricing them according to their marginal valuation of losses a, (instead of households’
Ozh).

The described invariance rules out direct effects from the exposure to panics to capital
allocation through capital demands. Also, since the invariance relies basically on limited
liability and accounting identities, it will be robust to several extensions of the model as

shown later.

Capital allocation and price. The previous discussion characterizes relative capital de-
mand, 1 now illustrate the effect of instabilities over capital allocation x and capital price
q. Together with market clear condition for capital , relative capital demand be-
comes a relation between x and ¢ conditional on the relevant instability: x%(q;||o) +0g]|).
This demand-side equilibrium relationship is decreasing in capital price Ox® /0q <0 (higher
capital price decreases the return gap due to experts’ productivity advantage) and in the
volatility of BCF fluctuations of capital returns Ok?/9 |0y +0,]| < 0 (experts are more ex-

posed to this instability). The supply-side equilibrium relationship x*(q) is implicitly defined
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by goods market equilibrium condition (23) and it satisfies dx%/0q > 0: a more efficient capi-
tal allocation corresponds to a larger capital price. Instabilities have no direct influence over
this condition. Together demand and supply determine x and ¢ conditional on instabilities

(and the economy’s states).

More volatile BCF fluctuations (i.e., ||oy +04||) reduce both, x and g, while the exposure to
self-fulfilled panics (i.e., p, £ or {4) has no effect over them. Of course, since instabilities are
endogenous objects, this is a partial equilibrium analysis. There is still the possibility that an
exogenous change in the exposure to self-fulfilled panics (e.g., an increase in the exogenous
arrival rate of sunspots I' that allows coordination of agents’ fears) influences x and ¢ by
affecting the other instability ||oy + aq||2. The following theorem rules this out: exposure to
panics has no role in the determination of capital allocation and price (conditional on the

economy’s states).

Theorem 1. (Capital’s invariance to panics) Capital allocation k is invariant to financial
panics, i.e., equilibrium function k(w,s) is the same as in the model without panics (p=0).

The same applies to capital price q(w,s) and capital allocation efficiency a(w,s).

Indeed, this result is stronger than the central message of this discussion: the key instability
for equilibrium capital allocation and price is the amplitude of BCF fluctuation of capital

returns and not the exposure to panics.

4.2.2 Asset prices’ effects over instabilities

The following discussion emphasizes that, although both instabilities operate through the
balance sheets of financial intermediaries and intensify as these weaken, each one depends

on a distinct feature of capital price’s dynamics.
The exposure to panics is characterized by evaluated at /%e, ie., 0 (l%e,ﬁq), while using
(24bf) and (25b)), the volatility of BCF fluctuations can be written as

Q
1—¢eqw (/%6 — 1)

ok + 0y (ke eq.0|Q) = (30)

where €44, > 0 is the elasticity of capital price with respect to experts’ wealth share and

Q =0y +qs\/505 € R? corresponds to the direct impacts of the real shocks over capital value.
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Both instabilities intensify when experts’ leverage ke is substantial, i.e, 9 ||o 4 o4 (-|Q)|| / ke >
0 and 00/ Oke > 0. However, while the amplification of real shocks increases with the
sensitivity of capital price to relatively small changes in the experts’ wealth share, i.e.,
dllo+04(-|Q)|| /Oegw > 0, the exposure to self-fulfilled panics increases with the gap be-

tween current capital price and its liquidation value 0¢;/0¢, > 0.

The denominator in summarizes the amplification mechanism for a real shock with
direct impact of Q percent on capital value. A one percent drop in capital value generates a
(l%e — 1) percent drop in experts’ wealth share w (combine equations and ) because
experts are more exposed to capital price fluctuations, i.e., ke > kj,. Then, the one percent
initial drop in capital price generates a second-round reduction of ( = ¢4, (/Ace — 1) percent.
Iteration on this logic delivers a third-round effect of ¢? percent and a total drop of 1/(1—¢)

percent, as illustrated in the expression above.

There are two necessary conditions for this amplification mechanism to operate: First, the
endogenous state w needs to respond to a change in capital price o,, # 0. Second, the capital
price needs to be sensitive to small changes in capital price €44, 7# 0. Since experts exploit
their productivity advantage by taking leverage, the first condition is always satisfied (see

equation (24b])). Then, absence of amplification corresponds to situations where €4, = ( =

0[]

4.3 Instabilities’ dynamics

Having understood the determinants of the two instabilities and their feedback effects over
asset prices, we revisit the two main insights of the paper, i.e., risky low-volatility environ-
ments and the stability paradox, to discuss the intuition behind these results and provide

the analytical characterization.

4.3.1 Dynamics for a given volatility of real shocks

First, I examine the vulnerability regions of each instability for a given volatility of real
shocks. Then, I discuss the distinct risk regimes that emerge from these dynamics, focusing

on the novel RLV regime. Figure [1l introduced the results discussed below.

18 As detailed later, situations with no amplification coincide with the ones in which real shocks have no
direct effects over capital price, because it is fixed at the level consistent with the efficient capital allocation
(i.e., ¢ = ¢*). Therefore, it is indifferent to define the absence of amplification as |jog|| =0 or ¢ =0, but,
conceptually, it corresponds to the latter.
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BCF fluctuations. Real shocks are amplified when experts’ wealth share is sufficiently
low, i.e., w < wy(s). As discussed above, this endogenous amplification only occurs if the
capital price is sensitive to the variation in financial sector’s capitalization induced by the
real shock (i.e., if €44 7# 0), and changes in w affect capital price only if they generate a
reallocation of capital among sectors. When experts are sufficiently capitalized, they hold
the entire capital stock (k =1 and condition holds as an strict inequality), and after
a small negative shock to their wealth share, they decide to increase their debt and keep
managing all capital. Therefore, capital price is not affected (i.e., €44, = 0) and there is no

amplification mechanism.

When experts are not sufficiently capitalized, holding the entire capital stock (i.e., k=1 Jw)
implies an excessive exposure to BCF fluctuations, so experts hold only a fraction of the
capital stock (k < 1 and condition holds with equality). In these cases, a small negative
shock to experts’ wealth share induces a reduction in their capital holdings: experts fire-sale
capital to unproductive households to limit their exposure to the relevant instability. As a
consequence, capital allocation efficiency decreases as well as capital price (¢4, > 0). The
first part of Lemma [4] formalizes the economy’s exposure to the amplification of real shocks,
which drive BCF fluctuations.

Lemma 4. (Amplification of real shocks) Assume the existence of an equilibrium in which
Wy (s) = min{w : q(w,s) = q*} is continuous in s. Then, there is an equilibrium in which
BCF fluctuations are amplified (i.e., ||og|| > 0 for a subset of the state-space with positive
measure) if and only if financial sector’s capitalization is sufficiently low (i.e., states (w,s)

satisfy w < wq(s)).

At one extreme, when the volatility of productivity shocks explodes, there amplification van-
ishes (i.e., limg o0 ||og|| =0 Vw € [0,1] ). At the other extreme, when volatility of productivity

shocks vanishes, amplification of real shocks persist (i.e., w,(0) >0).

Vulnerability to panics. The economy can be vulnerable to panics only at intermediate
levels of experts’ capitalization, i.e., wy(s) < w < wy(s). At one extreme, when experts’
wealth share is large, i.e., w > wy(s), the leverage they need to hold the entire capital stock
is low, so although the potential fall in capital price is substantial, experts’ net worth is
sufficient to absorb any losses. At the other extreme, when experts hold a small share of

wealth, i.e., w < wy(s), capital misallocation is severe, and the capital price is depressed.
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Even though experts’ leverage is high, the economy is shielded from panics because the
potential drop to liquidation value is not sufficiently large to wipe out experts’ net worth.

The first part of Lemma [l formalizes this intuition.

Lemma 5. (Vulnerability to panics) There exist an equilibrium in which the economy is
not vulnerable to panics (i.e., {y(w,s) =0) if the financial sector is deeply undercapitalized
or extensively capitalized (i.e., states (w,s) such that s >0 and w ¢ [wy(s),wy] where 0 <
wy(s) <wp <1).

At one extreme, when the volatility of productivity shocks is sufficiently high, the economy is
not exposed to panics. At the other extreme, when volatility of productivity shocks vanishes,
the exposure to self-fulfilled panics is guaranteed (i.e.,wp(s) < wy). The latter statement
considers ®(v) =log(p,t—1)/p,.

Risk regimes and RLV periods. The amplification of real shocks translates into more
volatile BCF fluctuations, while the vulnerability to panics represents a low probability of
a substantial economic and financial meltdown. Therefore, the dynamics of equilibrium
outcomes have distinct qualitative features depending on the presence of these instabilities
as illustrated by the conditional distribution of output growth (recall Figure [i(c)). Section
introduced three distinct regimes: 1) the unstable crisis regime, 2) the risky low-volatility

regime, and 3) the stable safe regime.

In the safe regime, experts are sufficiently capitalized (i.e., w > wy) to hold the entire capital
stock without relying on substantial leverage and shield this allocation from real shocks
by adjusting their debt financing after unexpected variations on their wealth. The limited
leverage prevents vulnerability to panics (i.e., £, = 0), and the resilience to real shocks implies
no amplification (i.e., ||oy|| = 0). In the crisis regime, experts’ wealth share is sufficiently
low (i.e., w < wy(s)) to prevent them from holding the entire capital stock and make their
capital holdings sensitive to real shocks, which means that they are endogenously amplified
(i.e., |logl| > 0). Moreover, in these situations, the economy might be exposed to self-fulfilled

panics.

These two regimes —also highlighted by previous research— deliver a one-dimensional picture
of financial stability: either real shocks are not amplified, and the economy is stable, or they
are amplified, and volatile BCF fluctuations evidence the economy’s instability. The intro-

duction of financial panics opens the possibility for fragile periods (i.e., £, > 0) with smooth
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BCF fluctuations (i.e., ||o4]| = 0): the risky low-volatility environments. Moreover, while
unstable periods are associated with a poorly capitalized financial sector when considering
only the amplification of real shocks, the introduction of panics unveils fragilities when the

financial sector is moderately capitalized but still heavily relies on debt.

In the RLV regime, experts’ wealth share is sufficiently large (i.e., w > w,(s)) to enable
them to hold the entire capital stock and maintain their capital holdings after negative real
shocks (i.e., ||og|| =0). However, it is not large enough (i.e., w < wy) to achieve this without
extensive debt, which coupled with a high capital price —consistent with the efficient capital
allocation— makes the economy vulnerable to panics (i.e., ¢, > 0). This discussion about
risk regimes assumed the presence of RLV environments for the volatility of real shocks s
studied (i.e., wy(s) < wy(s) <wy). The first part of Theorem (2 characterizes the necessary

and sufficient condition for the emergence of these seemly stable environments.

Theorem 2. (Risky low-volatility periods) Under the assumption of Lemma 4, there exist
an equilibrium that satisfies the following. For a given volatility of productivity shocks, there
exists a risky low-volatility environment (i.e., B(¥(s)) > 0 where ¥(s) = {w : ly(w,s) >
0N |log(s,w)|| =0}) if and only if the economy is vulnerable to panics at the threshold wey(s)
(i.e., ly(we(s),s) >0). Moreover, if B(2(s)) >0, then ¥(s) = (wy(s),wy).

At one extreme, when the volatility of productivity shocks is sufficiently high, there are mo
RLV environments (i.e., B(V(s)) =0 if s > syp where syp € Ry ). At the other extreme, when
volatility of productivity shocks vanishes, the presence of a risky low-volatility environment

is guaranteed (i.e., lp(w,(0),0) >0). The latter statement considers ®(1) =log(p,t—1)/p,.

Consider the threshold situation in which experts have just accumulated sufficient wealth
to ensure the efficient capital allocation and no amplification of BCF fluctuations, i.e., w =
Wy (s) +€ where € > 0 small. The recently achieved allocation efficiency and resilience to real
shocks rely heavily on debt funding. In fact, among the circumstances in which there is no
amplification of real shocks, the mentioned situation presents the largest experts’ leverage.
Therefore, if the economy is resilient to panics in this situation, it will be when experts own

a larger share of wealth, and they need less leverage to manage the entire capital stock.

The absence of feedback from the vulnerability to panics to the capital price plays a key

role in the emergence of RLV periods. If the exposure to panics depressed experts’ capital

32



demand relative to households —and therefore, capital price—, then the mere vulnerability
to panics could make the capital allocation sensitive to changes in experts’ wealth share
(€qw > 0) triggering the amplification mechanism.@ In other words, without the invariance

result, threshold w,(s) increases and RLV periods might not be viable (i.e., wy(s) > wy).

4.3.2 Dynamics as the volatility of real shocks varies

I examine how the instabilities’ dynamics vary with the exogenous volatility of real shocks,
providing the intuition behind the stability paradox. Figures 2 and [ introduced the results

discussed below.

Dynamics conditional on financial sector’s capitalization. More stable fundamentals
encourage experts to expand their capital holdings, so they are able to hold the entire capital
stock and shield this capital allocation from real shocks with less wealth (i.e., w/ (s) >0). Al-
though the range of capitalizations where real shocks are amplified shrinks, the amplification
intensifies wherever still present because experts choose weaker balance sheets (i.e., larger
leverage /;’e) These dynamics correspond to the volatility paradox result coined by Brunner-
meier and Sannikov| (2014)): the increase of endogenous amplification makes the volatility
of BCF fluctuations persist as the direct effect of real shocks vanishes. The second part of

Lemma @ captures a version of the volatility paradox result for this economy.

The volatility paradox, however, does not imply that more stable fundamentals lead to
a less stable economy: the rise of the endogenous component of BCF fluctuations is not
sufficiently strong to overcome the initial reduction of the exogenous one. The amplitude of
BCF fluctuations (i.e., ||ox +04||) declines when the volatility of real shocks decreases for a
given capitalization of the financial sector. Proposition B formalizes this result considering

a static comparison exercise across economies with constant volatility of real shocks ")

In contrast to their effect on BCF fluctuations, more stable fundamentals do increase the
economy’s vulnerability to panics. As the volatility of real shocks declines, the more stable
BCF fluctuations translate into a more efficient capital allocation and a higher capital price.

Then, both determinants of the vulnerability to panics —experts’ leverage k. and the po-

19The LHS of would include a difference in compensations for exposure to panics —as in 7 that
would make it hold with equality at states where it was an inequality before.

20The result also holds for numerical exercises with the baseline model. The simplified economy allows a
tighter analytical characterization.
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tential drop to liquidation price £,— increase as s declines.@ The second part of Lemma
captures the negative relationship between stability of fundamentals and exposure to panics
by characterizing the limiting cases. It shows that the economy is shielded against panics
if s is sufficiently large, and that the exposure to panics is guaranteed when s vanishes.
Proposition [ formalizes the result beyond the limiting cases considering a static comparison

exercise.

Proposition 3. (Stability paradoz illustration) Consider a continuum of economies with
constant volatility of productivity shocks (i.e., 05 = s =0), and indez these otherwise iden-
tical economies by the mentioned volatility s. Given w, the exposure to self-fulfilled panics
ly(wls) increases, while the amplitude of BCF fluctuations ||\/so +oq(w|s)| decreases, as s

declines.

In terms of the risk regimes, as real shocks become less volatile, the range of financial sector’s
capitalizations that corresponds to crisis regimes shrinks in favor of the corresponding range
for RLV periods. The second part of Theorem [2 characterize the limiting cases: for a
sufficiently large s, there are no RLV periods, while the presence of RLV periods is guaranteed

for sufficiently stable fundamentals.

Impact over the distribution of financial sector’s capitalization. The analytical
results discussed provide an insight on the stability paradox conditional on a given capital-
ization of the financial sector. However, the stability of fundamentals also influences the
share of time the economy spends at distinct levels of capitalization of the financial sector,
i.e., the stationary distribution G(w|s). In order to incorporate this effect into the instability
analysis, we rely on numerical illustrations (analytical result are not available). This is not
a quantitative paper, and numerical exercises are meant to illustrate qualitative properties
using parameters that deliver reasonable outcomes. The baseline functional forms and pa-
rameters are briefly discussed in Appendix [Bl and they target standard moments except for
the frequency of financial crashes (once every 35 years) and the maximum drop in asset

prices after these events (30 percent).

As illustrated by Figure[3 taking into account the variation in G(w|s), if anything, intensifies

the stability paradox message: more stable fundamentals deliver a less stable economy.

21The mechanism described does not operate when experts already manage the entire capital stock (i.e,
in the RLV and safe regimes). Hence, the upper bound of the range of experts’ wealth shares vulnerable to
panics (i.e., wy) is independent of s.
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(a) Unstable fundamentals (high s)

Figure 4: Stability of fundamentals, the stationary distribution, and welfare

(b) Stable fundamentals (low s)

(c) Welfare and the stability paradox
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Figure @l Panel (a) considers s = 65 and panel (b) to s =35. Panel (c) considers the welfare mea-
sure associated with a fictional representative agent. See appendix [A.2.1l This numerical illustration
considers the baseline parametrization except for the aggregate volatility process, which dynamics are
muted in the last panel (i.e., As =05 =0).

Figures Ml(a) and [@l(b) illustrate the distribution G(w|s) when fundamentals are stable (i.e.,
s is sufficiently low to make the economy vulnerable to panics) and when they are unstable,

respectively.

In the case of unstable fundamentals, the economy is frequently knock down from the safe
regime into the crisis one by the real shocks, but the system transits out of the crisis relatively
fast, because agents receive compensation (i.e., higher portfolio returns) for bearing the
larger exposure to real shocks that the endogenous amplification implies, and experts are
more exposed than households. This explains the sharp variation in the density at threshold
wy(s). The economy rarely enters deep crises (i.e., cases with severe capital misallocation:

k < 0.5), which occurs only after a long sequence of negative real shocks.

In the case of unstable fundamentals, the economy spends roughly the same amount of time
in the crisis regime. The economy is rarely knocked down to the crisis regime by the real
shocks, i.e., the system seldom enters the crisis regime through threshold we(s). However,
the economy is occasionally send directly to a deep recession by the arrival of a self-fulfilled
panic, i.e., the system jumps to w = 0. These dynamics explain the second mode of the

distribution at w = @ and the fact that the economy spends more time at deep downturns

22In contrast, we can show that lim,, 0 G(w|s) = 0 when s is sufficiently large to shield the economy from
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than in mild ones (i.e., with limited misallocation of capital: x > 0.5).

The economy spends prolonged periods at the RLV regime because the absence of amplifi-
cation reduces the gap between portfolio returns of experts and households. During RLV
periods, experts slowly expand their wealth share with little stochastic disturbances due to
the stable fundamentals, so it is unlikely for the system to exit this risk regime before experts
accumulate extensive wealth —which takes time— or a self-fulfilled panic arrives —which is a

rare event.

Welfare. Due to the stability paradox, welfare can increase when fundamentals become
more volatile despite the agents’ risk aversion. Numerical exercises illustrate WelfareF_g] as an
inverted-U shaped function of the volatility of real shocks. When fundamentals are stable
(i.e., low s), an increase in the volatility of real shocks generates a decline in the economy’s
exposure to panics, which translates into welfare gains. When fundamentals are unstable,
the economy is shielded against panics, so a rise in s reduces welfare. Figure @l(c) illustrates
this non-monotonicity. In order to emphasize that the presence of financial panics drives the
result, the figure also shows that welfare in a model without panics (i.e., no sunspots I' = 0)

is strictly decreasing in the volatility of fundamentals.

4.4 Extensions and robustness

Robustness. The two main insights of the paper ~the RLV environments and the stability
paradox— are built on the idea that equilibrium portfolio allocations and capital price are
mainly driven by the risk associated with BCF fluctuations and not by the exposure to
substantial crashes. Theorem [l formalizes this idea. The following discussion illustrates
the robustness of this message by showing that (a version of) the latter result holds for

generalized versions of the model.

The online appendix extends the model to include the following features: idiosyncratic pro-
ductivity shocks, aggregate shocks to capital’s expected growth rate and to the volatility
of idiosyncratic shocks, a transfer from households to experts when a self-fulfilled panic is

realized, and derivative markets to trade aggregate risks. This generalized model keeps the

crashes due to panics.
23 Appendix [A2.1] suggests two alternative welfare measures to aggregate the well-being of agents in this
economy. The non-monotonicity appears in numerical exercises for both measures.
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financial friction that prevents agents to fully unload assets’ risk on financial marketsF_Z‘-I
The online appendix shows that Theorem [I] holds for this generalized version of the model.
Moreover, when extending the model to also consider heterogeneous Epstein-Zin preferences,

the online appendix shows the following weaker version of Theorem [ holds.

Theorem . The relative capital demand of experts over households is independent of the
vulnerability to panics (i.e., taken as given aggregate outcomes, ke — l;;h is the same as in the

model without panics p=0).

The latter shows that the result that BCF fluctuations, and not the exposure to panics,
drive capital price and allocation does not relies on non-myopic portfolio decisions. Indeed,
the difference between Theorems [I] and [I emerges because EZ preferences imply that the
consumption decision depends on investment opportunities and not because the forward-
looking component of portfolio decisions introduces a gap in capital demands that depends

on the exposure to self-fulfilled panics.

Runs of creditors. An interpretation of the financial panics in this model are runs of
creditors on financial institutions. This interpretation requires additional assumptionﬁ
but delivers the same mathematical model. Hence, the analysis nests the empirically most
relevant and most studied class of panics: runs of creditors. Indeed, under this interpretation,
the creditors’ run component of the model is the continuous-time version of the one proposed
by |Gertler and Kiyotaki (2015), similar to Huang and Leow| (2020)).

5 Policy exercises

This section examines the economy’s response to leverage constraints and variations in the

volatility of idiosyncratic fluctuations. An interpretation of the latter is that policy can

24This generalized model nests the model built by Hansen et al| (2018) to compare the implications of
macroeconomic models with financial frictions. Their model does not include financial panics but nests
several models of the macro-finance literature such as |Basak and Cuoco| (1998), [He and Krishnamurthy
(2013)), Brunnermeier and Sannikov| (2014]), [Di Tella) (2017)), |Garleanu and Panageas| (2015]), and Bansal and
Yaron| (2004).

Z5The sunspot allows households to coordinate their fear about the solvency of experts, which can trigger
a massive withdraw of deposits. At this instant, experts are not able to raise further deposits, so they must
liquidate capital to honor their debt. If they can do so without going bankrupt, then all agents re-optimize
their portfolio, and there are no real effects. However, when the run makes experts insolvent, the economic
and final collapse materializes.
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influence the degree of idiosyncratic risk-sharing among agents (e.g., regulation on financial
engineering or targeted open market operations in certain asset markets). The model is
too stylized to deliver actionable policy recommendations, but these exercises deliver useful
qualitative insights regarding the policies’ effects over the two dimensions of financial fragility
analyzed. For tractability, this section considers a constant volatility of productivity shocks
(i.e., 05 =As =0).

5.1 Leverage constraints

Debt improves capital allocation efficiency, but it also fuels both endogenous instabilities.

Hence, leverage constraints introduce a trade-off between stability and aggregate output.

Constant leverage constraint. A constant leverage cap limits leverage more severely
when experts are poorly capitalized and prices signal they should use substantial leverage.
Moreover, while it is successful reducing the amplification of real shocks when it is binding,
it can fuel this instability when it is not. Regarding the exposure to panics, there is no
possibility of increasing this instability; however, in order to reduce it during RLV periods,
the constraint needs to be extremely tight, which leads to substantial misallocation during
downturns@ Figures Bl(a)dHl(c) illustrates the effect of the constant leverage cap on experts’
leverage and the instabilities, and the following proposition formalizes the discussed effects

of imposing such regulation.

Proposition 4. (Constant leverage cap) Consider the comparison between the unregulated
economy and one with a constant leverage constraint, i.e., k< L with £L>1. The implemen-

tation of a constant leverage constraint implies that:

1. The share of capital held by experts k weakly decreases, i.e., k(w) > k(w; L) Yw € [0,1].
The same applies to the capital price q.

2. Amplification of real shocks increases, i.e., oq(w) < o4(w;L), for the range of w in
which there is misallocation in both environments and the leverage cap is not binding.
Moreover, the region with positive amplification risk increases, i.e., wy < wy (L).

3. The wulnerability to panics persists, i.e., ly(w) = (w; L), for the range of w that

belongs to the RLV regime in both solutions.

26Moreover, when considering a transfer from households to experts after panics or more general prefer-
ences, a constant leverage cap decreases the liquidation price of capital, increasing potential drops in asset
prices and fueling the economy’s exposure to systemic runs.
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Relative capital demand captures the intuition behind the second result. Take as given
that the leverage constraint reduces the share of capital managed by experts and capital
price. Then, the relative capital demand of experts (/%6 — /%h) falls, and the gap between
capital returns for experts and households (ae — ay)/q broadens. Hence, the only possibility
for both agents to remain marginal buyers is that BCF fluctuations become more volatile

(i.e., larger ||ox+oqll ).

In terms of the effects over the endogenous dynamics of w, a constant leverage cap makes it
more difficult for the economy to escape the crisis regime. Inside this regime, limiting lever-
age reduces portfolio returns for experts directly (less investment in the asset with greater
expected return) but also indirectly through general equilibrium effects (the compensation
for exposure to BCF fluctuations, i.e., m, = 0y = l%e(ak +0y), decreases) Figure Bl(d)
illustrates that a constant leverage cap shifts the stationary distribution towards situations

where capital allocation is less efficient (i.e., aggregate output is lower).

The output-instability frontier depicted in Figure Ble) shows the combinations of output
and instability that a constant leverage constraint can achieve (each point corresponds to
a different cap £) and the metrics chosen for output and instability summarize all the dis-
cussed effects@ The positive slope of the output-instability frontier illustrates the trade-off
between output and stability. Despite the discussed shortcomings containing the endoge-
nous instabilities, the economy does become more stable as the constant leverage constraint
tightens. Importantly, this hinges on the exposure to panics. Without panics, e.g., the when
volatility of productivity shocks is substantial, a tighter leverage cap can lead to a less stable

economy (this case is not shown).

Endogenous (state-contingent) leverage constraints. Given the shortcomings of a
constant leverage constraint, I evaluate two intuitive state-contingent leverage constraints.
First, I consider an endogenous leverage constraint that becomes tighter when the economy’s
instability increases, i.e., k < Ly, (Zq)fl where Ly € Ry and X7 = ||c7k+(7q||2 +pl2. In this

framework, this leverage cap is equivalent to risk-based capital requirement that demands

2"When the economy is outside the crisis regime and households are not marginal buyers of capital, the
leverage constraint increases portfolio return for experts as it generates a discrete drop in the interest rate
paid by experts on its debt.

28The output measure is the expected aggregate output relative to potential: E[a]/ac = E[x(ae —ap) +
an)/ae, while the instability metric is the expected local variance of output growth, E[$2] = E[||oy, +0q|> +
pfﬁ]. The expectations are taken with respect to the stationary distribution of w.
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financial institutions to have sufficient net worth to cover a certain fraction of the standard
deviation of the value of their assets: n; > (Lx) \/E [(d(qkj))2/dt}. Second, I examine a
leverage cap that ensures that the debt-to-output ratio in the economy remains below certain
threshold, i.e., (k. —1)wq/a < L, where £, € Ry. Figures Bl(a){5(d) illustrate the outcomes

from imposing the endogenous leverage caps with their tightness adjusted to generate the

same overall instability E {22} as the case with the constant leverage cap shown.

In equilibrium, the risk-adjusted leverage cap is counter-cyclical, which substantially reduces
output losses during downturns compared to the case with a constant leverage cap. The
relatively loose constraint during severe downturns follows from the absence of exposure to
panics and the limited amplification of real shocks. The latter responds to the low sensitivity
of the wealth distribution to productivity shocks: even substantial productivity shocks fail
to generate significant variations in w, because the initial wealth of experts is depressed. As
experts accumulate wealth, the mentioned sensitivity increases, and the economy becomes

vulnerable to panics, so the constraint tightens.

The debt-to-output constraint is even looser during severe downturns and allows experts to
take as much leverage as in the unregulated case. The reason the constraint is loose during
severe downturns is that the absolute size of experts’ balance sheet, which is proportional
to wq, is deeply depressed. This constraint becomes binding when experts are moderately
capitalized, because, in these situations, experts’ balance sheet is large and a considerable
share of it is funded with debt. Hence, the constraint only binds when the economy is most

vulnerable to panics.

In terms of the effects over the endogenous dynamics of w and comparing to the unreg-
ulated equilibrium, the risk-based leverage makes the economy more prone to severe and
mild downturns by decelerating the economy’s recovery (i.e., reducing equilibrium portfolio
returns for experts during recessions). Meanwhile, the debt-to-output constraint makes the
economy less vulnerable to severe downturns but more vulnerable to mild ones. The rea-
son is that it effectively controls the economy’s exposure to panics, which limits the sudden
crashes that send the economy to a severe recession. To achieve this, it limits leverage during
relatively good times, turning them into mild downturns. Figure [B(d) presents the CDF of
aggregate output to illustrate the effects just discussed. The strategy of limiting leverage by
focusing on the exposure to panics generates, on average, fewer output losses to control the

instabilities as illustrated by the output-instability frontier in Figure Bl(e) .
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Optimal state-contingent leverage constraint. The idea behind the endogenous con-
straints examined is to limit leverage in situations in which agents’ decisions would otherwise
lead to substantial endogenous instabilities. This static approach improves over the constant
leverage cap but does not fully exploit a potentially more powerful strategy: minimize the
frequency with which the economy visits the crisis and RLV regimes. Indeed, the numerical
exercise described below delivers an optimal state-contingent leverage constraint that focuses

on this dynamic approach.

I look for the state-contingent leverage constraint, £(w), that maximizes the chosen wel-
fare measure.@ For the optimization exercise, I consider the following family of functions:
L(w) =2y c;w' ™! where ¢; € R. The optimal constraint is £(w) ~ 0.99w ™!, i.c., a leverage
constraint that only marginally binds when experts hold the entire capital stock (economic
booms), which requires o =w L. Surprisingly, the latter constraint allows to virtually reach
first-best outcomes in terms of aggregate output and overall instability, which implies more
aggregate output and a more stable economy compared to the unregulated equilibrium: the
allocation for the optimal state-contingent leverage cap lies outside the output-instability

frontiers in Figure Be).

The optimal state-contingent leverage constraint barely influences the economy’s instability
or aggregate output conditional on the capitalization of the financial sector. However, it does
affect the endogenous dynamics of w. When households do not hold capital, a marginally
binding leverage constraint on experts discretely affects portfolio returns, because returns
on assets need to adjust to make households marginal buyers. In particular, the excess
market compensation that households receive for holding capital, ugj —r, needs to rise.
The latter happens through a decline of the interest rate paid by experts on their debt,
which fuels portfolio returns for experts, allowing the economy to spend all of the time in
the safe regime. Figure [(f) illustrates the variation in the excess return of capital over the

risk-free rate and the change in the stationary distribution.

This exercise underscores the importance of considering the dynamic effects of leverage
constraints. Exploiting them to ensure the financial sector remains sufficiently capitalized
may imply some unintuitive results from the static point of view like constraining leverage

only when capital allocation is efficient, and the economy is booming@

29The two metrics suggested in Appendix [A.2.1] deliver equivalent results.
30The particular form of the optimal leverage constraint presented does not generalize to alternative
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5.2 Idiosyncratic fluctuations

This subsection considers the following evolution for individual capital holdings
dkji/kjr = (D(14) — 0)dt +/seodZy + \/<dZjy

where Z;; is the Brownian motion associated to agent j, which is independent from Z; and
Ziy for @ # 7. The exercise is to compare economies with distinct levels of idiosyncratic
volatility ¢ > 0.

Allowing for more volatile idiosyncratic fluctuations disciplines the market: it reduces ex-
perts’ equilibrium leverage, which reduces the amplification of real aggregate shocks and the
vulnerability to panics. In this sense, idiosyncratic risk controls aggregate risk. The reason
behind this response is the decline in experts’ relative capital demand. In the extension
considered, the characterization of experts’ relative capital demand becomeﬂ

(l%e_l%h) <||0k+0q||2+§) < ae;ah
with equality if l%h > (. The latter implies that koo — l;:h decreases as the volatility of idiosyn-
cratic fluctuations rises. The critical feature is that idiosyncratic fluctuations do not trigger
bankruptcy of experts, so they always bear the marginal losses that idiosyncratic fluctuations
generate. In this sense, idiosyncratic volatility is akin to the volatility due to real aggregate
shocks and unlike the exposure to panics. The following proposition formally characterizes

the economy’s response to variations in g.

Proposition 5. (Idiosyncratic volatility) As the exposure of the agents to idiosyncratic fluc-

tuations increases:

1. The share of capital held by experts decreases, i.e., k(w|sy) < k(w|g) Yw for any ¢ < .
The same applies to the capital price q.

2. Overall fluctuations due to real shocks become more volatile, i.e., ||og + oq(wlsy)||? +
s > ok +aq(w|)||* +< Yw for any g < .

3. The vulnerability to panics decreases, i.e., ly(w|sp) < p(wlg) Yw for any ¢ < gp.

modelling approaches of the financial sector, but the exercise emphasizes the importance of a dynamic
approach to regulation.
31For details on the derivation, see the generalized model in the online appendix.
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Figure 5: Leverage constraints and idiosyncratic volatility
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Figure il For panels (a)-(d), the tightness of the constraints {£, Ly,,£,} and the level of idiosyncratic
volatility ¢ are adjusted such that E[E?] = 0.75%. 1In panel (e), the diamonds correspond to the
optimal constraint considering welfare function E[vV, 4 (1 —v)V}] and squares considering E[V]. This
numerical illustration considers the baseline parametrization except for the aggregate volatility process,
which dynamics are muted (i.e., As = 05 =0).

Despite the decline in the volatility due to real aggregate shocks (i.e., ||og 4+ oy||?) overall
instability due to real shocks (i.e., ||og + 04||*> +¢) increases with greater ¢. Again, the idea
of more stable outcomes due to more volatile fundamentals is not present if the exposure to

panics is not acknowledged.

The dotted lines in Figures Bl(a)dbl(c) illustrate the impact of idiosyncratic risk on experts’
leverage and instabilities. The volatility of idiosyncratic fluctuations is adjusted to generate

an overall instability, i.e., E {Z?} =E {||ak+aa||2+§+ pﬁ(ﬂ, equal to the previous policy
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exercises. Conditional on the capitalization of the financial sector, the effects of idiosyncratic
volatility resembles the ones of a risk-based leverage constraint; however, the impact over
the endogenous evolution of w is qualitatively different. Unlike leverage constraints, allowing
for idiosyncratic fluctuations reduces the time the economy spends in both, severe and mild
downturns. The reason is that idiosyncratic risk accelerates experts’ wealth accumulation,
because they bear most of this risk in equilibrium. Figure[Bl(d) illustrates this dynamic effect

by plotting the CDF of aggregate output.

A non-monotonicity emerges for both aggregate output and instability: overall instability
E [E?} is U-shaped as function of the volatility of idiosyncratic shocks. Hence, for low levels
of idiosyncratic volatility, there is no trade-off between instability and output: as ¢ rises,
aggregate output increases and the economy becomes more stable. The negative slope of
the output-instability frontier in Figure Bl(e) illustrates the latter result. Nevertheless, for
sufficiently volatile idiosyncratic fluctuations, further rises of ¢ depress output and make the

economy less stable.

6 Conclusion

This paper presents a tractable macroeconomic framework that includes two endogenous
instabilities that emerge due to financial frictions, or more precisely, due to debt contracts.
These are the amplification of real shocks, which manifests as volatile outcomes at business-
cycle frequency, and the exposure to self-fulfilled panics, which translates into rare economic
crashes. This two-dimensional approach to financial stability unveils two critical messages

connected to the widespread idea that stability breeds instability.

First, the endogenous emergence of risky low-volatility environments —i.e., periods of strong
growth, high asset prices, and stable macroeconomic and financial outcomes that are exten-
sively exposed to panics— illustrates that solid performance of the economy can conceal the
threat of substantial collapses. Second, the analysis reveals a stability paradox: more stable
fundamentals (i.e., lower volatility of the real shocks driving BCF fluctuations) lead to a less
stable economy. The reason is the response of the endogenous instabilities, mainly the rise
of the exposure to financial panics. These two messages build on an insight regarding the
allocation and price of productive assets: they are insensitive to the exposure to crashes that

trigger large-scale bankruptcies.
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Appendix

A Analytical results.

A.1 Benchmarks

Proof of Proposition 1 (Complete markets). With complete markets, the first welfare
theorem applies. Optimality of production implies that experts manage the entire capital
stock, i.e., 1 = ack;. Since agents choose the same portfolio, the problem for an agent with
capital k is equivalent to pV'(k,s) = maxck,bplog(ckk) +RE[dV (k,s)] s.t. @) and ae = ¢+ cF.
Guess and verify that the value function satisfies V' (k,s) = log(k) + v(s) where v(s) solves
pv(s) = plog(pg*) +@(:*) — 5 — 15 lo||* +2'(s)As(5— ) + 0" (s)s |os||” and ¢* is the solution
to pg+ 1(q) = ae. Policy functions are ¢* = pg* and ¢ = 1(¢*) where function ¢(-) is implicitly

defined by ®'(:) =1/q. The optimal investment decision delivers law of motion ((11]).

Proof of Proposition 2 (Autarky). In autarky, the problem for agent j is the same as
in the complete market case except fo the second constraint, w becomes a; = ¢; +c§. Policy
functions remain c;? = pg;j and ¢; = 1(q;) where ¢; = ¢* for experts and ¢; = ' for households.
¢! is the solution to pq+t(q) = ap. Note that ¢* > q', s0 te > 15,. Replacing optimal invest-
ment rates on aggregate capital evolution (§), we have dk¢/ki = [k P (te) + (1 — K¢) D (ep,)] dt +
V/5t0 -dZs. Given the optimal investment rates and ry = ke t/(ket + kp¢) where ket (Kp¢)
represents aggregate capital for experts (households), the law of motion for x; is dx =

kK(l—k te) — P(ep))dt+ Ag(v —r)dt = F(k)dt, and k" is define K = 0. Results
(1—#) (D(te) — D(t)) dt+ Aa(v — k)dt = F(k)dt, and £ is defined by F(x%t) = 0. Resul
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follow from: the uniqueness of k%! and the fact F(x) > 0 for k < k% and F(x) < 0 for

K> Kaut

A.2 Solving baseline with financial frictions
A.2.1 Agents’ problem

Denote aggregate states as X and its law of motion as dX = uxdt+ox -dZ; —lxdJ;. In
this baseline model, X = (w,s). The HJB for agent j is pV'(nj; X) = max . plog(éjn;)+
E [%] s.t. kj >0, n; >0, dynamic budget constraint , and law of motion of aggregate
states and . I guess and verify the following solution for the functional equation
V(nj,£(X)) = log(n;) +log(£(X)), where & is a mapping from X to R that summarize the
investment opportunities of the agent. Given the uncertainty that drives dynamics, I con-

jecture the following law of motion d§; = §; (,u&jdt+05’j -dZy —Egyjdt]t). Then, using Ito’s

lemma,
dV . 1 2 1 2
E [dt] = ping =& = 5 ol +plog (1 —luj) + pej—5 H%jH +p(1—Le 5)
influenced by individual decisions not influenced by individual decisions

FOC for capital and investment are immediate: ¢; = p and ¢; = i(q) which is implicitly defined
by ®'(¢) =1/q. Both solutions are independent of the agent’s type. It is also straightforward
that the portfolio problem becomes . To verify the conjecture, it suffices to note that
the portfolio solution l%j does not depend on wealth level n; as long as p, j,0p,; and £, ; do

not, which is the case for both agents.

Replacing these solutions in the RHS of HJB, the net worth n; drops from the equation and

it becomes

1 1 2
plog (&) = plog(p) = pt- ptng = loms >+ plog (1= b j) + e — 5 o] +p(1—te ) (31)

which together with consistency conditions (that follow from Ito’s lemma): p¢ ;j = px9Ing; +
Str {OIX (aXX/ Ing; +0x Ing;0x lnég) Ox}, o¢j=0x0Ing;, and l¢ j =1 —&;/¢;, defines a de-
lay PDE for £(X). This verifies the conjecture.

Welfare measures. The value function of an agent can be written as V(n;,&(X)) =
log (Njk)+V;(X) where N =n;/ (fje.,llj njdj) and V; = log(w;¢¢;) with w; € {w,1—w} and
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J; € {Je, 1} refer to the relevant group’s wealth share and interval of agents, respectively. V;
is the value of an agent that holds the entire wealth of its sector (i.e., Nj = 1) normalized by
the aggregate capital (i.e., considering k = 1). However, the latter measure is not well-defined
for experts because, when they file for bankruptcy, they exit the economy and V, — —oc.
An alternative is to consider the extension in which experts receive a small transfer from
households after a self-fulfilled panic (see online appendix). In this case, we can consider
E[vV.+ (1 —v)V},] as a measure of welfare for the economy. Another alternative is to consider
a fictional representative agent with consumption path equal to the aggregate consumption
(but who expects volatility that includes idiosyncratic shocks). His value function is V' (X) =

log (k) +V(X), and we can consider E[V] as a welfare metric.

Proof of Lemma 1 (Households’ capital demand). For households, the dynamic
budget constraint becomes , and FOC follows directly. When l%h > (, solving for ]Afh
delivers two roots but only the smaller one is a solution to the maximization problem (the
other violates nj > 0 after a self-fulfilled panic). Second-order conditions are satisfied and
ensure a unique global maximum. When /%h > 0, the relationship between l;;h and aggregate
variables follows directly from FOC and the fact that £,, ;, < 1. For the relevant solution,
the RHS of is strictly increasing in l;’h, while the LHS is constant. Then, since the RHS
is strictly increasing in p and {4, the optimal /%h is strictly decreasing in those variables.
Moreover, since ||oy + 04| increases the RHS, the optimal kj, decreases as this sensitivity

rises for a fixed pugp (which depends on oy, - 0y).

Proof of Lemma 2 (Experts’ capital demand). For experts, the dynamic budget
constraint becomes , and FOC follows directly. The FOC holds with equality when
experts holds some capital, which is always the case in equilibrium. The FOC has two
solutions, both local maximums with respect to ]Afei the safe one /ch that satisfies the FOC
with 9(kf) = 0 and the risky one that satisfies the FOC with 9(k,) = 0.

Replacing the two local maximums into the objective function, deliver that the risky solution
is optimal if

A~

(he—=52) (e =)= Ghe=1)(r (ko) 1)+ > 5 ((he)? = (R)?) 1o+ o> +-p (1o (1~ hity) ~ Tom (o))

where 7, is the wealth of expert after bankruptcy, which is zero in the baseline model. The

assumption regarding the underperforming cost ¢ is that it is sufficiently large to ensure this
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inequality holds at every point of the state space. In the baseline model, this implies ¢ — co
because logarithmic preferences imply that expert’s utility diverges to —oo when his net
worth (and therefore, his consumption) drops to zero. A positive transfer after bankruptcy,
as included in the extensions, makes the underperforming cost required finite. Replacing
identity and pricing condition into the FOC for the risky portfolio delivers the

solution for k. displayed in Lemma 2.

A.2.2 Equilibrium

Proof of Lemma 3 (Law of motion of experts’ wealth share). Replacing capital FOC
for l%h on households” dynamic budget constraint delivers ji,, j, = rf + 7, onh+aplpy . Define
risk-adjusted return on capital for experts as A = jig,c — rf — 7 (o +0q) —aply. Using
FOC for ke, pricing condition for experts’ debt (18), and identity Eb—i-fg(l%e)(l%e -1)={¢,,
we have A, = (1 — ) - (0, +0¢) + (1 — V) aely. Then, py = rf 4+, One+anlpy e+ koA, —
(1 —=9)Y + ap [19(12,‘@@ —1) — (ke — l)ﬁb] The last term is always zero if the equilibrium
is symmetric among experts. Either all experts choose a safe portfolio and aj =0, or
they choose a risky one and identity holds. Also, a symmetric equilibrium implies
(1—9)Y =0. The reference to an asymmetric equilibrium is only possible for individual
outcomes of experts because the households’ problem was posted assuming all experts choose

the same portfolio. From now on, we assume symmetric choices among experts.

The wealth share of experts satisfies w = Ne/(Ne+ Njp) where Nj = [ njdj represents the
aggregate wealth of sector j € {h,e}. The dynamics of the wealth of each sector evolves with
the same (geometric) sensitivity to real shocks and (percentage) losses after self-fulfilled
panics as individual net worths, i.e., 05, ; and ¢, j, respectively. The drift is different because
of the perpetual youth structure. In particular, uy e = fin,e +Ag(v —w)/w and pn p, = pin p +
Ad(w—v)/(1—=w). Then, using Ito’s lemma, and replacing the expressions for p, ;, and ji, e,
market clearing implication woy, ¢ + (1 —w)oy, j, = 01, + 04, and identity (27)), delivers law of

motion for w presented in Lemma 3.

Macro-financial linkages. Endogenous component of BCF fluctuations. Let market clear-
ing condition for goods define a(q) with da/0q > 0. Applying Ito’s lemma delivers
oqa = (0a/0q) qoy, which implies |0, =0 if and only if ||o4|| =0. Losses in case of a
self-fulfilled panic. Since self-fulfilled panics imply the bankruptcy of all experts, house-

holds manage the entire capital stock just after one occurs, i.e., a = ap. From goods’
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market clearing condition (23), we have § = ¢ where ¢ solves u(q) + pg = aj. Then,
lo=1—a/a=1—ap/a(q) =1—ap/alq’/(1—1¢,)) = f(£,), and it is immediate to verify
f'>0.

Proof of Theorem 1 (Capital invariance). I characterize the function ¢(w,s) and show
that it is independent of the economy’s vulnerability to panics. The market clearing condition
for goods —equation — is a one-to-one mapping between ¢ and x, which I denote as
k(q) = [t(q) + pg — ap) /(ae — ap). Then, the invariance result also applies for x and its linear

transformation a = (a. — ap )k + ap,.

First, subtract the FOC for households from the FOC for expert , and use pricing
condition and identity to deliver the expression for the relative capital demand:
(26). The definition of x and capital market clearing condition imply ke = k/w and ky, =
(1—-k)/(1—w). Replacing these into relative capital demand yields

Qe — Ap,

) T (32)

Second, replace the solution for ¢, —equation (24b))— into the consistency condition for o,

—equation (25b))— and express portfolios in terms of experts’ capital share. This delivers

= w0 - ot e 33)

which characterizes the amplification of real shocks and can be written as . Then,

function g(w,s) satisfies

(ot

which holds as an equality when ¢ < ¢* (i.e., when households hold some capital k(q) < 1).

0+q—505

< (1 = sla) - w>)2 - (34)

The equilibrium function must also satisfy ¢(0,s) = ¢ and ¢(1,s) = ¢*, which follow from
goods’ market clearing condition and the fact that, without wealth, no agent can hold capital.
Since these boundary conditions and —or k(q) = 1 when appropriate— fully characterize
q(w, s) independently of the arrival rate of self-fulfilled panics p, the proof is completed.

Proof of Lemma 4 (Amplification of real shocks). Let X =[0,1] x Ry refer to the
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state space (i.e., (w,s) € X) and denote the capital price associated to the equilibrium
which existence is assumed as Q(w, s). I construct an equilibrium capital price function that
satisfies ||og|| =0 for Xp = {(w,s) : w > w,(s)} and ||og|| > 0 almost everywhere else (i.e., for
a set X, C X = X /Ay such that B(X,) = B(AY)).

Consider the following function: ¢(w,s) = Q(w,s) for (w,s) € A§ and ¢(w, s) = ¢* for (w,s) €

Xp. Since @ corresponds to an equilibrium capital price, (w,(s),s) must satisfy

If (wy(s),s) belongs to a region in which holds with equality, then Qu(ws(s),s) =
Qs(we(s),s) =0. Otherwise, Q(w,s) > ¢* for some (w,s) in the neighborhood of (w4 (s),s)

which is inconsistent with equilibrium. Given the zero partial derivatives, reduces to
(B5). If (we(s),s) belongs to a region in which holds as an inequality, then Q = ¢* and
partial derivatives are zero: again reduces to (35). If (ws(s),s) belongs to a threshold
between regions and does not hold, then there is a (w, s) in the neighborhood of (w,(s), s)
that belongs to a region in which @) = ¢* and does not hold. This is a contradictions

because () is an equilibrium capital function.

Condition implies that any (w,s) € Xy also satisfies this condition because the LHS is
decreasing in w. Therefore, g(w, s) satisfies equilibrium condition within subset Xj. Since
q = @ for X, it must satisfy equilibrium conditions, so all it is left to complete the proof is

to show that ||og| > 0 almost everywhere within X{. I prove this by contradiction.

Assume there exist a set E C X§ such that [|og|| =0 for all (w,s) € E and B(E) > 0.
One the one hand, since holds as an equality and |jog|| =0 , ¢(w,s) must satisfy
(Z(((i):u%) s|lo|? = % within E. This implicitly characterize g(w,s). On the other hand,
logll = 0 is equivalent to 0 = ¢y, (k(q) —w) o+ gs05, which also implicitly characterize ¢(w, s)

within E. Both characterizations cannot be consistent with each other V(w,s) within E.

Indeed, a sufficiently rich shock structure (i.e., rank([o 04]) > 2) implies g,y = g5 = 0.

Vanishing volatility. Denote §(w) = q(w,0). Since §(0) = ¢' < ¢* and §(w) is continuous, it
must be that w,(0) > 0. Ezploding volatility. As s — oo, must hold as an equality and
the only possibility for this to happen is that x(¢) = w Vw. This delivers lims_, ||og|| = 0.

Proof of Lemma 5 (Vulnerability to panics). Upper bound. In equilibrium, since
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agents cannot short-sale capital, experts’ capital share satisfies x € [0,1] which implies (by
the goods’ market clearing condition) that ¢ € [qT,q*]. Then, the largest percentage drop in
capital price is Eq =1—g¢gf /q*. The maximum leverage that experts can choose is ke=1 Jw.
Then, the maximum losses for experts’ creditors are fy(w) =1— (1—£,)/(1—w) > {. Given
that (4(¢,) = 0 and 17{) < 0, the economy is not vulnerable to panics for w > wy = £,. Note
that wy < 1.

Lower bound. Consider the function f4(w,s) =1 — (1 —{y) <Ak€ > which is equivalent to

fre—1
lp(w, s) except that it can be negative (i.e., £, = max{@b,O}). Since @b(w,s) is continuous, if
limy,—s0 £y (w, s) < 0, then (w, s) < 0 (i.e., fy(w,s) = 0) for all (w,s) s.t. w < wy(s)=min{w:
(w,s) s.t. fb(w,s) =0V w = wyp} where the option of w = wy is included for the volatility
levels s in which fy(w,s) < 0 Yw so the minimum is well defined. Note that condition
@b(w,s) = 0 is equivalent to q(l%e —-1)= q'k. since G = ¢f. Therefore, it is only left to prove
that lim,,_q Zb(w,s) <0.

Since ¢(0,5) = ¢ < ¢*, ¢5(0,5) =0 and holds as an equality as w — 0, i.e.,

(1 _ q%limw—m (quw (k(q) — w))>2 (%) — (,Q/ (qT> (limey—s0 qu) — 1) s HJHQ. Since the ODE

is quadratic in g, in general, there are two solutions for it. Therefore, there are two limits

that satisfy the latter equation. These are

. 1 ae—ah> 1 ‘|
lim g, = +1f , 36
w0 v K (g [( gt 3H0H2 (36)

which is finite for s > 0, and lim,,_,q g, — 0o respecting

3
limuy—0 quw (5(q) —w)* = &' (¢")s ||| (qT) (ae —ap,)*. Each limit (potentially) correspond

to a different equilibrium. I consider the former solution. Then, lim, s 25(10,3) =1-
’f/(qT)hmw—m quw

“/(qT)limw—w quw—1

bound satisfies lims_,owy(s) = 0 for both solutions.

) < 0, which completes the proof for the lower bound. Note that the lower

Vanishing volatility. Denote §(w) = limg_,0¢q(w,s), then, by continuity, §(w) = ¢(w,0) and
Gu = 0limg_,0q(w, ) /0w = limg_0 ¢ (w, $) = qu(w,0). So, for the region in which ¢ < ¢*, we

1—(j—w(ﬁ(@)—w) 2 e _ ) = w lim | s 2
QA C_IA w(l—w) s—0

Since the original PDE is quadratic g5, there are two solutions for the §(w) that satisfy the

have
qs(w, s)

o+ ~
q

S

o4



previous equation. The first one in which [lims_,0¢qs| — oo and satisfies limg_, qgs eRy,
and another solution in which |lims_,0gs(w, s)| < oo and §(w) is characterized as follows: For
w < g, §(w) solves ODE

4= Gu (k(q) —w) (37)

with boundary conditions §(0) = ¢' and §(i0,) = ¢*. For w > iy, §(w) = ¢*. Consider the

latter solution for ¢(w), then we can show that creditors’ losses at s =0, i.e., @b(w) =1-
T
q' _ r(q)

q (k(g)—w)’ "
the proof is completed if {(wy) > 0.

are strictly increasing for w < 0, and strictly decreasing for w > ,. Therefore,

In order to provide a close form expression for ,, consider ®(¢) = log(yp,. —1)/p,. Then,
the investment function satisfies ¢(q) = (¢—1)/¢, and there is an explicit solution for §(w):
§(w) = 1w-+00+/ (O +0) — 63, where 01 = (ac—ap,)/ (9, +p) and 0y = (¢, +an) /(9 +
p) for w < by and §(w) = ¢* for w > by. Moreover, Wy = (2(1+69/61)) . This implies

A

Uy(g) =1—26p/(200 +61) > 0, which completes the proof.

Exploding volatility. As s — oo, we have k(q) — w Vw. Hence, there exists a s,;, < oo such

that for all s > s,,, we have 1 — ¢'/q* < w/k(q) Yw, which implies no exposure to panics.

Proof of Theorem 2 (Risky low-volatility periods). Consider the equilibrium constructed
in Lemma 4 and a given level of volatility of productivity shocks s. If ¢,(ws(s),s) > 0, then,
by the continuity of ¢, on w, there exists an € > 0 such that 5(w,s) >0 when |w,(s) —w| <e.
By Lemma 4 there is amplification for w > w,(s), therefore there exists RLV environment
for the given s, i.e., (wy($),ws(s)+¢) C W¥(s).

If B(¥(s)) >0, then, by Lemma 4, there exists an interval [w’,w’ + €] with w’ > w,(s) that is

a subset of W(s). Then, £,(w',s) > 0 which implies £(wq(s),s) > 0 because, for w > w,(s),
ly(w,s) = maX{O, 1— g—l ( 1 )} is decreasing in w.

1w
Vanishing volatility. The result follows directly from the solution for lims_,gq(w,s) that
satisfies |lims_0qs| < oo presented in Lemma 5. Ezploding volatility. The result is trivial

given the absence of exposure to panics for s > sy,.

A.3 Simplified economy: constant volatility of productivity shocks.

Proof of Proposition 3 (Stability paradox illustration). I use notations ¢(w|s) to

denote the equilibrium capital price g(w) for an economy with volatility of productivity
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shocks s, i.e., s is a parameter. The characterization of g(w|s) satisfies a simplified version

of (34): For w < we(s),

D) e () ) e (38)
(it et = (=5 01—

w(l—w) q

with boundary conditions ¢(0|s) = ¢' and g(w,|s) = ¢*. For w >w,(s), g(w|s) = ¢*. The ODE
-1
is quadratic in terms of gy, so it has two solutions: one with o +0,=s [ER (1 - %‘” (k(q) — w)) <

0 and another one with oy, + 0, > 0 (the inequality applies to each coordinate if there is more

than one shock). This proposition considers the latter solution, so the ODE is equivalent to

0 1‘J sllol* (n(g)—w> @)

k(q) —w (ae —ap) \w(l—w)
BCF fluctuations of capital returns. For w > wg(s), ||ox + 04| = ||ok|| = s ||| which decreases
as s declines. For w < w,, the relative capital demand implies
2 Qe —ap w<1_w)>
op+ o4l = 40
e (a0

Since the RHS is decreasing in ¢, the result is equivalent to show g(w|s) increases as s
declines. Note that this implies that w. (s) > 0, i.e., for some w, a decrease in s implies a
change from ||o,|| > 0 to ||oy|| =0, which is consistent with a reduction of ||o) + 04|l for the
ODE solution considered (i.e., the one with o+ 0, >0 ) as long as the left-derivative is
positive, i.e., limy, s, g > 0. Since g(ws(s)|s) = ¢* and ¢ < ¢* always, the latter condition

must be satisfied.

Proof that ¢(w|s) is decreasing in s. Consider s, > s;. For w =0, we have ¢(0|s;) = q(0|sp)
and ¢, (0]s;) > qw(0]sp). The latter follows from considering the limit as w — 0 of ODE
(39), which yields (36). Assume q(w;|s;) < q(w:|sy) for some w,. Since both functions are
continuous in w, Jw, € (0,w) such that q(wy|s;) = q(wy|sx) and g, (wy|s;) < guw(wy|sy). This

is a contradiction since ¢y, is decreasing in s (taken as given ¢ and w).

Exposure to self-fulfilled panics. The result follows directly from dg(w|s)/0s < 0 since for a

given w, {(wls) is a (capped from below) monotone transformation of ¢(w|s) in equilibrium:
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tw1s) = 14 (s=sl)]

Proof of Proposition 4 (Constant leverage constraint). Equilibrium capital price. The
capital price satisfies (38 (or x(¢) =1 when appropriate) for states in which the constraint
is not binding. If the constraint is binding, then k(w; L) = wL | ¢(w;L) is pinned down by
goods market clearing condition (23)), and o4(w; L) solves the simplified version of with
os = 0. In these situations, we need to verify that households would prefer to hold more
capital, i.e., that holds. Boundary conditions at w =0 and w = 1 remain the same.

Share of capital held by experts. Assume k(w) < k(w; L) for some w € [0,1]. Then, consider
wp = inf{w € [0,1] : k(w) < k(w;L)}. By continuity, we have that x(wg) = r(wp;L). Note
that the definition of wy implies that limy,j,, & (w) < limy, |, £'(w; £) since & is supposed to
be greater at the economy with the leverage constraint when w > wg but remains sufficiently
close. Given the characterization of g(w;L) this is not possible. Consider the case where
the constraint is not binding at [wg,wp + €], then in this interval the capital price solves
the same ODE with the same boundary condition in both economies, so it must be that
limyy 4y K (W) = limy, |y, &' (w; £). Now, consider the case where the constraint is binding at
[wo,wo + €], then it must be that the solution for g(w) delivers a value for limy,,,, «'(w)
that violates the leverage constraint. Since k’(w; L) respects such constraint and leverage in
equilibrium satisfies ke = x/w, we must have that lim,, Jwo K (w) > limy, 4, &' (w; £). This is

a contradiction.

Amplification of real shocks. Consider the w-region in which there is misallocation in
both environments and the leverage cap is not binding, i.e., {x(w),x(w;L)} € [0,1) and
ke (w; L) < L. Then, both solutions need to satisfy relative capital demand as an equal-
ity. The result follows from the fact that x and ¢ decrease when a leverage cap in introduced.
Vulnerability to panics. The result is trivial since the leverage constraint cannot be binding

during RLV periods since experts manage the entire capital stock in these situations.

Proof of Proposition 5 (Idiosyncratic volatility). This version of the model is an

especial case of the one characterized in the online appendix. Equilibrium capital price

satisfies

Qe — Q
)[\]0k+aq]|2+§] < e h (41)

2
where ||oy + o4||* = ||ak||2/(1 — %“’ (k(q) —w)) and k(q) is a strictly increasing function
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defined by goods market clearing condition. The latter inequality must hold as an equality
if k(q) < 1.

Experts’ capital share. Consider ¢, > ¢ and recall that, in equilibrium, ¢ is a monotone
transformation of k. Assume r(wls,) > k(w|g) for some w € [0,1]. Then, define wy =
inf{w € [0,1] : k(wl|sy) > k(w|g)}. By continuity, we have that x(wolsp) = K (wolg). Note
that the definition of wg implies that xy(wolsn) > Kw(wols). Also, it must be that this
crossing point satisfies kK < 1, so holds as an equality and ¢, is a decreasing function of
¢ for fixed values of q. Hence, it must be that gy, (wolsy) < qu(wols;). Since Ky = K'(¢)quw, the
latter implies that iy, (wolsy) < Kw(wols;). This is a contradiction.

Overall BCF fluctuations due to real shocks. If k(w|sy) < 1 and k(w|g) < 1, then holds
as an equality for both ¢; and ¢;. Then, the result follows from the fact that x and ¢ are
decreasing in <. If k(w|sy) = k(w|g) =1, then o4(w|s) = o4(w|sy) = 0 and the result follows
trivially. If k(w|g) =1 and k(w|s,) < 1, we can split the variation in three: the change from
¢ to threshold ¢(w), the variation at threshold {(w), and the change from {(w) to g, where
$(w) = max{s : k(w|s) = 1} corresponds to a threshold where o4(w|s) is discontinuous as

function of parameter ¢. Previous results imply that it is sufficient to verify that individual
12 2.

fluctuations ||y +0¢||*+¢ increase at S(w): limgj¢||o +oq(ws)||? > limeye ||og + og(w]s)
We have that limg¢ o4(w|s) = 0 because, in this region, ¢ = ¢* and there is no amplification.
Then, the proof is complete if lim | coq(w|s) > 0, which holds if limje gy (w|c) > 0. The
latter needs to hold because ¢(w|S) = ¢* which is the upper bound for the capital price in
any equilibrium. Ezposure to self-fulfilled panics. The result follows directly from ¢(w|s)

being decreasing in .

B Parametrization and numerical strategy

Baseline parametrization. Logarithmic adjustment cost function: ®(¢) =log(p,c+1)/¢,,
and linear function for the sunspot arrival rate: I'(¢y) = ~5¢p. Time is measured in years. |
use a standard value for the discount rate (p = 0.02) and a low value for the depreciation
rate (6 = 0.03) given that capital quality shocks are similar to persistent productivity shocks
that induce pro-cyclical variation in capital utilization rate. The fraction of experts among

newborns is set to 17 percent (v = 0.17).

For the set of parameters {ah,ae,a(l),gob}, I match the following moments at the stochastic
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steady state: investment to capital ratio (8.8 percent), GDP growth volatility (2.31 percent),
GDP growth (3.24 percent) and the maximum drop in asset prices (30 percent). Except to
the latter, these moments correspond to U.S. data for the post-World War II period. This
procedure yields {as = 0.058,a, = 0.125,0(1) = 0.023,¢, = 10.19}. Regarding the volatility
process, the long-term mean of s is normalized to s = 1, while the mean reversion parameter is
set to A =0.156 and the volatility to agz) =0.132. These parameters ensure that s > 0 always.
Recall that I consider two “pure” shocks, so o(?) = a,gl) = 0. The last set of parameters
{A\d,7»} are matched using the entire stationary distribution. The annual death probability
for agents is set to 5.7 percent (\; = 0.057), targeting a conservative average leverage of
5. Finally, the parameter that governs the arrival rate of sunspots (7, = 0.74) ensures that

self-fulfilled panics happen on average once every 35 years.

Numerical strategy. The recursive equilibrium characterize in section .1l defines a func-
tional equation for g(w,s). Given the presence of jumps, this functional equation is not a
PDE, as is the case in almost all continuous-time macroeconomic models in the literature.
Besides {q,qw,qs, Guw, Iss, qws }, the functional equation also includes g(w(w),s), the capital
price if a self-fulfilled panics were to arrive at state (w,s). There is no general approach to

solving this class of functional equations (i.e., delayed PDEs).

In this model, the system of equations can be partition in two block, one of which defines
a (first-order) PDE for ¢(w,s). The capital price invariance to the exposure to panics is
essential for the mentioned partition. This PDE corresponds to evaluated as an equality
with boundary conditions ¢(0,s) = ¢, q(wy(s),s) = ¢*, and q(w,0) = §(w) where wy(s) is
an endogenous threshold and §(w) is defined by . I solve this using finite differences.
Once we have the solution for ¢(w,s) the equilibrium objects {oy, ke, l%h,aw} follow directly.
In order to solve for the second block of equilibrium objects, it is necessary to solve for w.
In the baseline model, w = 0 is the condition consistent with bankruptcy, but this numerical
approach allows for an arbitrary 0 = f(w,q,w) such as q(w,s)w = 7q(w,s)w which is the
corresponding equation in the extension with transfers to experts after the collapse. Once

we have a solution for w(w, s), we can retrieve solutions for {11, 4y, 7, ¢y, D, ftw, uw }-

Given the solution for the recursive equilibrium, I use an iterative approach to solve for the
value functions from the HJB equations as described in Brunnermeier and Sannikov
(2016)). Also, I develop a numerical strategy to solve for the stationary distribution of the

state variable without resorting to simulations.
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